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1. Introduction

In [4], Hrushovski developed the theory of difference schemes, which is one of the major recent advances
in difference algebra geometry. In Hrushovski’s theory, well-mixed difference ideals played a key role.
Therefore, it is significant to make clear of the properties of well-mixed difference ideals.

It is well-known that Hilberts basis theorem does not hold for difference ideals in a difference
polynomial ring. Instead, we have Ritt-Raudenbush basis theorem which asserts that every perfect
difference ideal in a difference polynomial ring has a finite basis. It is naturally to ask if the finitely
generated property holds for more difference ideals. Let K be a difference field and R a finitely difference
generated difference algebra over K. In [4, Section 4.6], Hrushovski raised the problem whether a
radical well-mixed difference ideal in R is finitely generated. The problem is also equivalent to whether
the ascending chain condition holds for radical well-mixed difference ideals in R. For the sake of
convenience, let us state it as a conjecture:

Conjecture 1.1. Every strictly ascending chain of radical well-mixed difference ideals in R is finite.

Also in [4, Section 4.6], Hrushovski proved that the answer is yes under some additional assumptions
on R. In [5], Levin showed that the ascending chain condition does not hold if we drop the radical
condition. The counterexample given by Levin is a well-mixed difference ideal generated by binomials.
In [9, Section 9], Wibmer showed that if R can be equipped with the structure of a difference Hopf
algebra over K, then Conjecture 1.1 is valid. In [7], Wang proved that Conjecture 1.1 is valid for radical
well-mixed difference ideals generated by monomials.

Difference ideals generated by binomials were first studied by Gao et al. [3]. Some basic properties of
difference ideals generated by binomials were proved in that paper due to the correspondence between
Z[x]-lattices and normal binomial difference ideals.

The main result of this paper is that every radical well-mixed difference ideal generated by binomials
in a difference polynomial ring over an algebraic closed and inversive difference field is finitely generated.
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© 2017 Taylor & Francis
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As a consequence, Conjucture 1.1 is valid for radical well-mixed difference ideals generated by binomials
in a difference polynomial ring over an algebraic closed and inversive difference field.

2. Preliminaries
2.1. Preliminaries for difference algebra

We recall some basic notions from difference algebra. Standard references are [5, 8]. All rings in this
paper will be assumed to be commutative and unital.

A difference ring, or o -ring for short, is a ring R together with a ring endomorphism o : R — R, and
we call o a difference operator on R. If R is a field, then we call it a difference field, or o -field for short. A
typical example of o -field is the field of rational functions Q(x) with o (f(x)) = f(x + 1). In this paper,
all o-fields will be assumed to be of characteristic 0.

Following Gao et al. [2], we introduce the following notation of symbolic exponents. Let x be an
algebraic indeterminate and p = > ;_, ¢ix' € N[x]. For a in a o-ring, we denote @’ = [Tz (oi(a))¢
with 0%(a) = aand a® = 1. It is easy to check that for p, g € N[x], we have a#*9 = aPal, a1 = (aP)1.

Let Rbe ao-ring. A o-ideal I in R is an algebraic ideal which is closed under o, i.e., o (I) € I.If I also
has the property that a* € I implies a € I, it is called a reflexive o -ideal. A o -prime o -ideal is a reflexive
o -ideal which is prime as an algebraic ideal. A o-ideal I is said to be well-mixed if for a,b € R, ab € 1
implies ab* € I. A o-ideal I is said to be perfect if fora € Rand g € N[x] \ {0}, a8 € I impliesa € I. It
is easy to prove that every perfect o -ideal is well-mixed and every o -prime o -ideal is perfect.

If F C Ris a subset of R, then we denote the minimal ideal containing F by (F), the minimal o -ideal
containing F by [F] and denote the minimal well-mixed o -ideal, the minimal radical well-mixed o -ideal,
the minimal perfect o -ideal containing F by (F), (F),, {F}, respectively, which are called the well-mixed
closure, the radical well-mixed closure, the perfect closure of F, respectively.

Let Kbeao-fieldand Y = (y1,. .., ys) a tuple of o-indeterminates over K. Then the o -polynomial
ring over K in Y is the polynomial ring in the variables yfl fori=1,...,nandj € N. It is denoted by
K{Y} = K{y1,...,yn} and has a natural K-o -algebra structure.

2.2. Preliminaries for binomial difference ideals

A Z[x]-lattice is a Z[x]-submodule of Z[x]" for some n. Since Z[x]" is Noetherian as a Z[x]-module, we
see that any Z[x]-lattice is finitely generated as a Z[x]-module. If f;, . . ., f,, generates a Z[x]-lattice L,
then we write L = (fy,...,f,).

Let Kbeao-fieldand Y = (y1,...,yn) a tuple of o-indeterminates over K. For f = (fi,...,fs) €
N[x]", we define Yf = [T, y{' Y¥ is called a monomial in 'Y and f is called its support. For a,b € K* =
K\ {0} and f, g € N[x]", aYf + bY8 is called a binomial. If a = 1,b = —1, then Yf — Y8 is called a pure
binomial. A (pure) binomial o -ideal is a o -ideal generated by (pure) binomials.

For f € Z|[x], we write f = f, — f_, where f,,f_ € N[x] are the positive part and the negative part of
f> respectively. For f € Z[x]", f1 = (fi,,.. .. fu ) fo = (i, .o fu).

Definition 2.1. A partial character p on a Z[x]-lattice L is a group homomorphism from L to the
multiplicative group K* satisfying p (xf) = (p(f))* for all f € L.

A trivial partial character on a Z[x]-lattice L is defined by setting p(f) = 1 for all f € L.
Given a partial character p on a Z[x]-lattice L, we define the following binomial ¢ -ideal in K{Y},
Ti(p) == [Y™ = p(OY" | f e L]

L is called the support lattice of Z1(p). In particular, if p is a trivial partial character on L, then the
binomial o -ideal defined by p is called a lattice o -ideal, which is denoted by Z;..
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Let m be the multiplicatively closed set generated by yfj fori=1,...,n,j € N. Ao-ideal I is said to
be normal if for any M € m and p € K{Y}, Mp € I implies p € I. For any o -ideal I,

I'm={p e K{Y}|3IM € ms.t Mp € I}

is a normal o -ideal.
Lemma 2.2 ([3, Corollary 6.20]). A normal binomial o -ideal is radical.
Proof. For the proof, please refer to Gao et al. [3]. O

In [3, Theorem 6.19], it was proved that there is a one-to-one correspondence between normal
binomial o -ideals and partial characters p on some Z[x]-lattice L.
In [3], the concept of M-saturation of a Z[x]-lattice was introduced.

Definition 2.3. Assume that K is algebraically closed. If a Z[x]-lattice L satisfies
mf € L= (x—omf €L, 1)

where m € N, f € Z[x]", and o0,, is the m-th transforming degree of the unity of K (see [3, Lemma 5.13]
for the definition), then it is said to be M-saturated. For any Z[x]-lattice L, the smallest M-saturated
Z[x]-lattice containing L is called the M-saturation of L and is denoted by satps(L).

The following two lemmas were proved in [3] for the Laurent case and it is easy to generalize to the
normal case.

Lemma 2.4 ([3, Theorem 5.21]). Assume that K is algebraically closed and inversive. Let p be a partial
character on a Z[x]-lattice L. If 1 (p) is well mixed, then L is M-saturated. Conversely, if L is M-saturated,
then either (Z;(p)) : m = [1] or Zp.(p) is well-mixed.

Lemma 2.5 ([3, Theorem 5.23]). Assume that K is algebraically closed and inversive. Let p be a partial
character on a Z[x]-lattice L. Then (Z1(p)), : m is either [1] or a normal binomial o -ideal whose support
lattice is satpr(L). In particular, (Zp), : m is either [1] or Lsapy,(1)-

3. Radical well-mixed difference ideal generated by binomials is finitely generated

In this section, we will prove that every radical well-mixed o -ideal generated by binomials in a o-
polynomial ring over an algebraic closed and inversive o -field is finitely generated as a radical well-mixed
o -ideal. For simplicity, we only consider the case for pure binomials since it is easy to generalize to the
general case.

For convenience, for h € Z[x], if deg(h;) > deg(h_),then weseth™ = hy andh~ = h_. Otherwise,
we set ht = h_ and h™ = h.. Moveover, we set deg(0) = —1.

For a,b,c,d € N, we define ax? > cx?ifb > d,orb = dand a > c. For h € Z[x], we use lt(h) and
lc(h) to denote the leading term and the leading coefficient of h respectively.

Theorem 3.1. For any Z|x]-lattice L € Z[x]", (Z1), is finitely generated as a radical well-mixed o -ideal.

Proof. Denote the set of all maps from {1,...,n} to {+,—,0} by A and 79 € A is the map such that
79(i) = 0for 1 < i < n.Let Ag = A\{10}. Forany v € Ay, we define

A; i={(hy,...,hy) € L|1lc(h) > 0ift (i) = +, le(h;)) < 0if t (i) = —, andlc(h;) =0
ift(@))=0,i=1,...,n},
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and
¥, = {(deg(h),1c(h)), ..., deg(h]),lc(h)), deg(hy), ..., deg(h;,)) | (h1,...,hy) € Ar}.
For any 7 € A, let G; be the subset of A; such that

{(deg(g;N,lc(g), . .., deg(g)),1c(g), deg(gy ), . - .. deg(g, ) | g = (g1,- - -, 8n) € Gr}

is the set of minimal elements in ¥; under the product order. It is clear that G; is a finite set. Let
= {Y8+ — Y& | ge G}

We claim that the finite set Urcp,F; generates (71 ), as a radical well-mixed o -ideal.

Let Ty = (Uren,Fz)r. We will prove the claim by showing that Yh+ — Yh- € Z forallh € L. Let us
do induction on (lt(hf), ..., 1t(h)) under the product order for h = (hy,...,h,) € L. For simplicity,
we will assume that Y2+ — YP- has the form

+ +
hi By Iy i

by
2% }’t J’t+1 “Yn —}"1 }’t )’t+1 o Yn s

where 1 < t < n. And without loss of generality, we further assume lc(h;) # Ofor 1 <i <n.

The case for h = 0 is trivial. Now for the inductive step. By definition, there exists T € Ag and
(g1>.-.,81n) € Gg such that (hy,...,h,) € A; and deg(gf) < deg(h;“),lc(g;“) < lc(hf),deg(g;) <
deg(hi_),i =1,...,n. Letuschooseaj € {1, ..., n} such that

deg(h) — deg(g") = min {deg(h;") — deg(g;")}.

Without loss of generality, we can assume j = 1. Let s = deg(h,") —deg(g;") > 0. Sincelc(h}) > le(g;)
there exists an e € N[x] such that deg(e) < deg(hf) andp = hf‘ +e— xsgf' € N[x] with It(p) < lt(hi").
Then

x'gy g xg xS oo h ht N N ¢ bt
e t+1 & t+1 t+1
1) Y Yeg1 Yn " (! }’t Yer1 -y =y Yex1 o yn")

yp+x5g+ hf +x0gh B4t b X80 hy, gy
— yt yt+l yn

hy +e by +x°g) b xigt b g, Iy +x'g,
) Ve t+1 o )n

- - + s p b nt ok h
S Y NS Y SR 300 s ONDY ot SV I B B

+x°gy h++x I3 B +x'gm h+xg hy, +xgt
+)fa 2 Y ey !

hy +e h;+xfg2+ h xtgt b g, B +agy
I RED/% "V e yn "

i 2 - T o o hy L
R AREES L e RS R LR . BT DL T P LS Y
d W Wi_ Wn_
A O = ),
for some di,...,d, € N[x] and some w = (wy,...,w,) € Z[x]". It is clear that w € L. Since
Itp + x°g;) < lt(h+) Itth] +e) < lt(h+) then lt(wf‘) < 1t(h+) and because of the choice of

j, we have s + deg(g+) < deg(h+) for 2 < i < n, from which it follows lt(w+) lt(h+) 2 <
i < n. Therefore, (lt(wf) Sltw)lh)) < (1t(h+) S lt(hh)). Thus by the 1nduct10n hypothesis,

w w; w w;
Yy =y -y, € Ipand hence

Syt Xs s —
PR S e -y e 7,
So by the properties of radical well-mixed o -ideals, we have

x° gt x X*g,
y gl y[ gt ytfi+1 . .yn &n (Yth _ Yh,) c ZO)
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and then
x°gr x5 x°g x5
ylgl "'ytg[ytJri 1"')’ng"()\ih+ Yh_)ezo-

Ifs > 0,lets’ = max{0,s — min;<;<{deg(g/") — deg(g; )}} < s. Again by the properties of radical
well-mixed o -ideals, we have

g g g, x’g </h h

1o Sy s (Y =Y e T,
and then

gy g xXgh Xl oyhe _yhoy ¢ 7

Y15y T Ve e ( - ) € 1.

If s’ > 0, repeat the above process, and we eventually obtain
T o oxg xgr
)ffl )’ft )’t+{+l"'}’ng (Yh+_Yh_)€IO.

Since deg(g; ) < deg(h;),1 <i < tands+ deg(g;") < deg(h;"),t+ 1 < i < n, then by the properties
of radical well-mixed o -ideals, we have

YR (Y - YP-) e 7. ()

Similarly, we also have
yh+ (v — YRy € 7. 3)
Combining (2) and (3), we obtain (Yh+ — Yh-)2 € 7, and hence Y2+ — Y- € Z;. So we complete the
proof. O

Corollary 3.2. Let L € Z[x]" be a Z[x]-lattice such that |, is well-mixed, then Iy is finitely generated as
a radical well-mixed o -ideal.

Proof. It is immediate from Theorem 3.1 since 7, is already a radical well-mixed o -ideal. O

Example 3.3. LetL = (<)1C : i)) C Z[x]? be a Z[x]-lattice. Since L is saturated, Z} is a o -prime o -ideal
[3, Corollary 6.22(c)] and hence well mixed. Then by Theorem 3.1, 7; = [yfiyz — yl)/;i i e N*] =
vz = y1iya)e

X4+1—x
-1

o -ideal and hence well-mixed. Then by Theorem 3.1, 7, = (y© 1% — y¥pa, ¥ Ty — ).

Example 3.4. Let L = (( )) C Z[x]* be a Z[x]-lattice. Since L is saturated, Z; is a o-prime

To show that radical well-mixed o -ideals generated by binomials are finitely generated, we need the
following lemma.

Lemma 3.5 ([7, Proposition 5.2]). Let F and G be subsets of any o -ring R. Then
(F)r N {G)r = (FG),.
As a corollary, if I and | are two o -ideals of R, then
(Dr e ={IN])r = I

Proof. For the proof, please refer to Wang [7]. O
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Lemma 3.6. Assume that K is algebraically closed and inversive. Suppose that I C K{Y} is a pure binomial
o -ideal. Then (I), : m is finitely generated as a radical well-mixed o -ideal.

Proof. Since I : m is a normal binomial o -ideal, there exists a Z[x]-lattice L such that I : m = Z;. Note
that (I), : m=(I : m), : m, so by Lemma 2.5, (I}, : m s [1] or L, (1)- Since (I), is radical well mixed, it
is easy to show that (I), : m is also radical well mixed. So by Corollary 3.2, (I), : m is finitely generated
as a radical well-mixed o -ideal. O

Lemma 3.7. Assume that K is algebraically closed and inversive. Suppose that I € K{Y} is a pure binomial
o -ideal. Then

al

Dy ={DOr:mN({Ly; )N N (I,)%l“l)r

for some {p1,...,p1} € {1,...,n}and some (ay,...,a;) € N

Proof. By Lemma 3.6, (I}, : m is finitely generated as aradical well-mixed o -ideal. Therefore, there exist
fire.osfs € (I)y : mand my,...,ms € msuch that (I), : m = (f1,...,fs)r and mify,..., msfs € (I)r.
Then by Lemma 3.5,
)r = (Lf1)r N (I, my),
= (L f1, f2)r (L f1, m2)r N (L, m)y
1f1,f2 r N (L, mymy),

=(f o fdr Ol my - mg)
:(I),]Inﬂ I’)/Pfl Vm"'m<1’)/;?1)r’

for some {p1,...,p;} € {1,...,n}and some (aj,...,q) € N O

Suppose that {ji,...,j} € {1,...,n}, (a1,...,a;) € N'and Iy € K{y1,...,yn} is a pure binomial
o-ideal. Let T7' "% = {)/11~~~y{1” | fis-.-»fn € Nlxl,deg(f;) < ai,1 < i < t}. We say that I is

Juejt
saturated with respect to {yj’»‘:l, e ,)/]?‘tat} ifly = Iy : TJ“IIJ:Z’, that is, for any g € K{yi,...,yn} and
M e TH™ Mg € I implies ¢ € Iy. Let I € K{y1,...,yx} be a pure binomial o-ideal. The minimal
e > M8 plies g y Y p
o -ideal containing I which is saturated with respect to {y"a1 y"at} is called the T“l"'a‘ -saturated

aj.. ﬂt

closure of I, denoted by N; e a’ ( ) We will give a concrete descr1pt1on of the T; -saturated closure of

a pure binomial o -ideal I. Let 1%V = T and recursively define Il = [1li=1] “1 “t](z =1,2,...). The
following lemma is easy to check by definition.

Lemma 3.8. LetI C K{y1,...,yu} be a pure binomial o -ideal. Then
Nt 0 = Uzl &

Let Iy € K{y1,...,yn} be a pure binomial o-ideal. Then we say I = (Io,ijjl e ,yj”tut )r is quasi-

. . . ay ar . . f . wf
nozmal if I()aIS saturated with rﬂespect toﬂ {ij1 ey ijz } and for any binomial Y' — Y8 € I, if Y' €
[y]?‘1 L ,y]?‘t '], then Y8 € [ij1 L ’)’; 1. In analogy with Theorem 3.1, we can prove the following

lemma.

Lemma 3.9. Let {ji,...,ji:} € {1 , 1},
o-ideal. Assume that I = (Io,y]"1 R y]"

well-mixed o -ideal.

( ...,ar) € Ntand Iy € K{y1,...,yn} a pure binomial
)r is quasi-normal. Then I is finitely generated as a radical
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Proof. Let] = {YM+ — Yh- e [ | Yh+, YP- € Ta1 at} By a similar argument with Theorem 3.1, we
Y g

at

can prove (J), is finitely generated as a radical well mlxed o -ideal. It follows that I = {J, y]"l s y]’“t )r
is finitely generated as a radical well-mixed o -ideal.

Lemma 3.10. Suppose that {ji,. . .,j:} € {1 ..,n} (al,...,at) € N'andI C K{Y}isapure binomial o -

ideal. Let Iy = N “‘(I) Assume that (I, Y Vr is quasi-normal. Then there exist {p1,...,p;} C
N; i i q p p

(1,...,n} and (by,..., b)) € N such that

a o a al at by
SR AN A NN (RS ANTNSTAS i

1<k<I

al

@y

where either px & {j1,...,jt}, or px = jm and by < ay, for1 <k <1

Proof. Since (I, y]’.‘lal, ceos y]’.‘tat), is quasi-normal, by Lemma 3.9, it is finitely generated as a radical
well-mixed o -ideal. That is to say, there exist f1, . . ., f; € Ip such that

at

ay at “
(IO’)§C1 7~..))7i >7=<f1""’fs’)?(l ’“")?t >1"

By (4), Iy = U, 11, so there existsi € Nsuchthatfy, ..., f; € Ill. By definition, there exist g1, . . ., g, €
-1 Tj“ll ]a’ and Mits. .., M, € T“1 a’ such thatfl,...,fs € g ..» g and mugi, ..., mi g, €
1U=11 There further exist g;_ 11,...,g,_11H e -2, T]‘?]f’t and m;_11,...,mi_1j,_, € T}if::iat such

that migi, . . .. mi g, € [gi—11>. - > &i—11,_, ] and m_118i—11> . . . > Mi—11,_, &i—11;_, e -2l Iterating this
process, we eventually have there exist g11,...,41;, € I : Ta1 “and myg, ..., my, € T 1% such that
Mot .- > Mo Q0 € (8115 gyl and muigie, .. ., mlllglll e I. Hence by Lemma 3. 5 we obtam

at a1 at

Ly sy e = AL g1 811y sy b N (Lmay g 7Ly )y

at

= (I>g21) s 5811 - - )gllp)/])'cl 1’ cee >)/])'Ct )r

al at

N (I,le s mMyL,myg "'mllp)’]ﬁ ,~~->)’;i )r

aj at
= (I,gﬂ,...,gili,...,gu,...,glll,yjcl ,...,y; )r

al at
OALmig - omy - omuy - mus Y0, )r

a a, a at b
:(IO))ﬁl»-o-))ﬁt%’m ﬂ (I»)/}Cll)-~~>)/}ct »)/;kk>f
1<k<I
for some {p1,...,p;} € {1,...,n}and some (by,..., b)) € N!, where either px ¢ {j1,...,jt} Of px = jm
and by < apforl <k<l O]

From the proof of Lemma 3.10, we obtain the following lemma which will be used later.

Lemma 3.11. Suppose that {jy,...,j:} € {1,...,n}, (a1,...,a;) € N and I C K{Y} is a pure binomial
o-ideal. Let h € N;l]t“’ (D\I. Then there exist {p1,...,p1} S {1,...,n}and (by,...,b) € N such that

ay a ay at ay ar by
(I))/]xl ’...))/]{Ct )r= (I/,)’J)‘Cl a-~-a)§i )rm ﬂ (Ia)/]xl )...,)/}Ct ,)/;k >i’>
1<k<l

where I’ D [I,h] is a pure binomial o -ideal and either py ¢ {j1,....jt}, or px = jm and by < ay, for
1<k<l
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Lemma 3.12. Suppose that {j1,....j;} € {1,...,n}, (a1,...,a;) € N and I C K{Y} is a pure binomial
o-ideal. Assume that there exists a binomial Yf — Y8 € I such that Y! € [y]’»‘la1 e ,y}‘tat] and Y& ¢

[y]?‘l”l,...,y]?‘:t]. Then there exist {p1,...,pi} S {1,...,n}and (b1,...,b)) € N such that

Lyt e = (VA

1<k<l

where either px ¢ {j1,...,jt}, Or px = jm and by < ay, for1 <k <1

Proof. Since there exists a binomial Yf— Y8 € I'suchthat Yf € [y]’-‘lal yens ,yj’.‘tat] and Y8 ¢ [y]’»‘la1 e ,y]’»‘tu'],
then Y& ¢ (I, y]’.‘:l e yj’-‘ta' )r. Therefore, by the properties of radical well-mixed o -ideals, there exist
{p1,....p1} € {1,...,n}and (bl, .ob)eN satisfyingeitherpk ¢ {j1,...,jt}or px = jmand by < ap,
for 1 <k < Isuchthaty}" 5" € (Ly¥",...,y%") . Hence,

Ly ﬁr—ﬂwﬁwﬁﬁm

1<k<l |

Lemma 3.13. Leti € {1,...,n} and a € N. Suppose that I C K{Y} is a pure binomial o -ideal. Then

a bj, ...bj ] b]
Lyye= () G

(ot (B ey

is a finite intersection, where for each member in the intersection, I. b s g pure binomial o -ideal and

Juji
b]l

b; by
eltherlh“j c ;Vx )/M] (Lo )fxl“ Ly}, )y is quasi-normal.

Proof. Use Lemma 3.12 repeatedly and assume that we obtain a decomposition as follows:

L= () @y ()
(15sft)5 (€ 55t
For each member in the intersection (5), if I C [y]?clle s yf:jt], then we have nothing to do.
Otherwise, if there exists a binomial Yf — Y8 € Io\I such that Yf e [y]’»‘;jl ey y]’»‘:jt] and Y& ¢
[y]?‘:jl,...,y;‘:j’],then by Lemma 3.11,
di

¥) i ¥l G ¥ G
Ly =y 0 () W e

1<k<l

where I’ D [I, Yf — Y8] is a pure binomial o -ideal and either py ¢ {ji, .. .,ji}, or px = jm and di < Cjm
for 1 < k < I. Moreover, by Lemma 3.12, we have

¥) i ) G €k
(I/,)/;ll,...,)/;[)r: ﬂ (I/y)ﬁclla--->)/;t>)/;k >1”
1<k<l
where either s ¢ {j1, ..., i}, or sx = jm and ex < ¢;,, for 1 < k < I'. Thus we obtain
Iyle yxt ), = ﬂ (I/»)/;‘Cljl>--~»)/;‘iha)/§kk>rm (6)

1<k<l
d

S/ RS AS

1<k<l
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By substituting (6) into (5), we rewrite (5) as follows:

(I,)/fﬂ)r: m c]1 cjt )pcfl )/J'z ). ?)

(15e-jt)>(cjy ,..-,C][)

For each member in the intersection (7), repeat the above process. Let Iy = N, TG (9 Gince

Jueejt Nt
at each step, either the number of elements of {y;,, ..., y;} strictly increase, or the vector (c]1 yeees c]t)
strictly decrease (under the product order), then in finite steps we must obtain either I fl PR

[y]’»‘:j1 . ,y]’-‘:j[ 1, or for any binomial Yf — Y8 € I, if Yf € [y}‘fjl y"”] then Y8 € [y"“ y"t” ].
In the latter case, by Lemma 3.10,

CJI CJt 11 e CJ C]t 1 Gt xM
]1 ]t ]1 )fC <IO’)/C 5 -~>)§§ )rn m U )/( ))?i ))/fk )r>
1<k<l”
where either t; ¢ {j1,...,j:}, or tx = jm and by < ¢j,, for 1 < k < I”. It follows that (Io,y]?clj1 Ve ,y]?‘tj’)r
is quasi-normal. Apply the same procedure to the rest of the members in the intersection, and in finite
steps we eventually obtain the desired decomposition. O

Now we can prove the main theorem of this paper.

Theorem 3.14. Assume that K is algebraically closed and inversive. Suppose that I < K{Y} is a pure
binomial o -ideal. Then (I), is finitely generated as a radical well-mixed o -ideal.

Proof. By Lemma 3.7, we have

a1

(I>r=(1>r5mm<1’}’;l )rﬂ“'ﬂ(L;\f.fl )r (8

for some {p;,...,p1} € {1,...,n}and some {a;,...,q;} € N By Lemma 3.13,

Uy b] b] bjy bj
Ly = () @ ©)
(15e-3t)5 (B - sbj)

Si (9) ith I 11 [yx ]1 yxbjt ] (ijl "'hjt yxbjl yxhjt > : : L th b
ince in either [; " ]t 7 boor (LTS v sy ) ds quasi-normal, then by
Lemma 3.9, each member in the 1ntersect10n (9) is finitely generated as a radical well-mixed o -ideal.
And since (9) is a finite intersection, by Lemma 3.5, (I, y}fzk )r is finitely generated as a radical well-mixed
o-ideal for 1 < k < I. Moreover, by Lemma 3.6, (I), : m is finitely generated as a radical well-mixed
o -ideal. Putting all the above together, by (8) and Lemma 3.5, (I}, is finitely generated as a radical well-
mixed o -ideal. O

Corollary 3.15. Assume that K is algebraically closed and inversive. Any strictly ascending chain of radical
well-mixed o -ideals generated by pure binomials in K{YY} is finite.

Proof. Assume that I} € I, € ... C I... is an ascending chain of radical well-mixed o-ideals
generated by pure binomials in K{Y}. Then U?°,I; is also a radical well-mixed o -ideal generated by
pure binomials. By Theorem 3.14, U, I; is finitely generated as a radical well-mixed o -ideal, say by
{ai,...,am}. Then there exists k € N large enough such that {a;,...,a,} C Ik It follows Iy = Ij4; =

L=UR I O

Remark 3.16. By Corollary 3.15, Conjecture 1.1 is valid for radical well-mixed o -ideals generated by
pure binomials in a o -polynomial ring over an algebraic closed and inversive o -field.
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Remark 3.17. Theorem 3.14 and Corollary 3.15 actually hold for radical well-mixed o -ideals generated
by any binomials (not necessarily pure binomials). The proofs are almost identical.

In [6], Levin gave an example to show that a strictly ascending chain of well-mixed o -ideals in a
o -polynomial ring may be infinite. Here we give a simpler example in terms of well-mixed o -ideals
generated by binomials.

j i il j i ial
Example 3.18. Let I = (y}y> — y1y3) and Iy = [y]y> —yly",y’f](y’fyz -y ) ,yfj(y’fyz -y )"
i,j,l € N,i > 2,j > i — 1]. We claim that I = Iy. It is easy to check that Iy € I. So we only need to
show that Iy is already a well-mixed o -ideal. Following Example 3.3, let Z; = (y]y> — y1)3)r. Suppose
ab € Iy C 7I;. Since I} = [y’ftyz ylyx : i € N*]is a o-prime o -ideal, then a € IL orb € IL In

each case, we can easily deduce ab* € Ij. Therefore, Ij is well-mixed and I = Iy. So y’f Y2 — N )/§ ¢ I

In fact in a similar way we can show that ( y"yz V1Y5s - - y"kyz ylyxk =y — yly", . y"kyz
A O —yl)f‘) y"(y"yz—yvf") pijl e Nii = k+1j = i—klandy y -y ¢
2=y s y’l‘ Y2 — y’z‘ ) for k > 2. So we obtain a strictly infinite ascending chain of well-mixed
o -ideals:

Wiyr = y198) C W =y v =) o C =y — i) €

As a consequence, 7, is not finitely generated as a well-mixed o -ideal.

In [3], it is shown that the radical closure, the reflexive closure, and the perfect closure of a binomial
o -ideal are still a binomial o -ideal. However, the well-mixed closure of a binomial ¢ -ideal may not be
a binomial o-ideal. More precisely, it relies on the action of the difference operator. We will give an
example to illustrate this.

Example 3.19. Let K = Cand R = C{y1, y2, y3, ya}. Let us consider the o-ideal I = (y3(y3 —y4), y3(y3—
ya)) of R. Since (y — y3)(y3 — ya) = (11 +y2) (71 — y2) (y3 — ya) € L we have (y1 +y2) (1 — y2)* (3 —

ya) = T 4 v — y8 — 953 — ya) € L Note that yi (3 — y4),55 ™ (73 — ya) € I. Hence
y2 — y105) (y3 — y4) € 1. If the difference operator on C is the identity map, in analogy with Example

4.1 of [7], we can show that yy2(y3 — y4),y175(y3 — y4) ¢ I. As a consequence, I is not a binomial
o -ideal.

On the other hand, if the difference operator on C is the conjugation map (that is o (i) = —i), the
situation is totally changed. Since (y% —l—y%)(y3 —y4) =1 +iy) i —iv2)(3—ys) €L, ) +iv2) (1 —
iy2)* (3 — ya) = O+ iviy2 + ivys — ¥5 (s — ya) € Iand hence (yiy2 + y1y3)(ys — ya) € L
Similarly, we also have (y{y> — y195) (y3 — ya) € L. So y{y2(y3 — ya), y1y5(y3 — y4) € I. Actually I =
DY s —y) S0 s (s — ya) . y5 (v3 —ya)® s u, v, wi, wa,a € N[x1,2 < 1,2 < v,x+1 < wy +wy] (the
notation < is defined in [7]). In this case, I = (y% 3 — y4), y% (y3 — y4)) is indeed a binomial o -ideal.

Remark 3.20. We conjecture that the radical well-mixed closure of a binomial o -ideal is still a binomial
o -ideal. However, we cannot prove it now.
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