

Communications in Algebra

Finite basis for radical well-mixed difference ideals generated by binomials

Jie Wang

To cite this article: Jie Wang (2017): Finite basis for radical well-mixed difference ideals generated by binomials, Communications in Algebra, DOI: 10.1080/00927872.2017.1392541

To link to this article: https://doi.org/10.1080/00927872.2017.1392541

Accepted author version posted online: 20
Oct 2017.
Published online: 15 Dec 2017.

Submit your article to this journal
\qquad Article views: 2

View related articles

View Crossmark data 〔〕

Finite basis for radical well-mixed difference ideals generated by binomials

Jie Wang (D)
School of Mathematical Sciences, Peking University, Beijing, China

Abstract

In this paper, we prove a finite basis theorem for radical well-mixed difference ideals generated by binomials. As a consequence, every strictly ascending chain of radical well-mixed difference ideals generated by binomials in a difference polynomial ring is finite, which solves an open problem in difference algebra raised by Hrushovski in the binomial case.

ARTICLE HISTORY

Received 17 May 2017
Communicated by J. Bell

KEYWORDS

Binomial difference ideal; finitely generated property; Hrushovski's problem; well-mixed difference ideal

2010 MATHEMATICS SUBJECT CLASSIFICATION 12H10

1. Introduction

In [4], Hrushovski developed the theory of difference schemes, which is one of the major recent advances in difference algebra geometry. In Hrushovski's theory, well-mixed difference ideals played a key role. Therefore, it is significant to make clear of the properties of well-mixed difference ideals.

It is well-known that Hilbert's basis theorem does not hold for difference ideals in a difference polynomial ring. Instead, we have Ritt-Raudenbush basis theorem which asserts that every perfect difference ideal in a difference polynomial ring has a finite basis. It is naturally to ask if the finitely generated property holds for more difference ideals. Let K be a difference field and R a finitely difference generated difference algebra over K. In [4, Section 4.6], Hrushovski raised the problem whether a radical well-mixed difference ideal in R is finitely generated. The problem is also equivalent to whether the ascending chain condition holds for radical well-mixed difference ideals in R. For the sake of convenience, let us state it as a conjecture:

Conjecture 1.1. Every strictly ascending chain of radical well-mixed difference ideals in R is finite.

Also in [4, Section 4.6], Hrushovski proved that the answer is yes under some additional assumptions on R. In [5], Levin showed that the ascending chain condition does not hold if we drop the radical condition. The counterexample given by Levin is a well-mixed difference ideal generated by binomials. In [9, Section 9], Wibmer showed that if R can be equipped with the structure of a difference Hopf algebra over K, then Conjecture 1.1 is valid. In [7], Wang proved that Conjecture 1.1 is valid for radical well-mixed difference ideals generated by monomials.

Difference ideals generated by binomials were first studied by Gao et al. [3]. Some basic properties of difference ideals generated by binomials were proved in that paper due to the correspondence between $\mathbb{Z}[x]$-lattices and normal binomial difference ideals.

The main result of this paper is that every radical well-mixed difference ideal generated by binomials in a difference polynomial ring over an algebraic closed and inversive difference field is finitely generated.

As a consequence, Conjucture 1.1 is valid for radical well-mixed difference ideals generated by binomials in a difference polynomial ring over an algebraic closed and inversive difference field.

2. Preliminaries

2.1. Preliminaries for difference algebra

We recall some basic notions from difference algebra. Standard references are [5, 8]. All rings in this paper will be assumed to be commutative and unital.

A difference ring, or σ-ring for short, is a ring R together with a ring endomorphism $\sigma: R \rightarrow R$, and we call σ a difference operator on R. If R is a field, then we call it a difference field, or σ-field for short. A typical example of σ-field is the field of rational functions $\mathbb{Q}(x)$ with $\sigma(f(x))=f(x+1)$. In this paper, all σ-fields will be assumed to be of characteristic 0 .

Following Gao et al. [2], we introduce the following notation of symbolic exponents. Let x be an algebraic indeterminate and $p=\sum_{i=0}^{s} c_{i} x^{i} \in \mathbb{N}[x]$. For a in a σ-ring, we denote $a^{p}=\prod_{i=0}^{s}\left(\sigma^{i}(a)\right)^{c_{i}}$ with $\sigma^{0}(a)=a$ and $a^{0}=1$. It is easy to check that for $p, q \in \mathbb{N}[x]$, we have $a^{p+q}=a^{p} a^{q}, a^{p q}=\left(a^{p}\right)^{q}$.

Let R be a σ-ring. A σ-ideal I in R is an algebraic ideal which is closed under σ, i.e., $\sigma(I) \subseteq I$. If I also has the property that $a^{x} \in I$ implies $a \in I$, it is called a reflexive σ-ideal. A σ-prime σ-ideal is a reflexive σ-ideal which is prime as an algebraic ideal. A σ-ideal I is said to be well-mixed if for $a, b \in R, a b \in I$ implies $a b^{x} \in I$. A σ-ideal I is said to be perfect if for $a \in R$ and $g \in \mathbb{N}[x] \backslash\{0\}, a^{g} \in I$ implies $a \in I$. It is easy to prove that every perfect σ-ideal is well-mixed and every σ-prime σ-ideal is perfect.

If $F \subseteq R$ is a subset of R, then we denote the minimal ideal containing F by (F), the minimal σ-ideal containing F by $[F]$ and denote the minimal well-mixed σ-ideal, the minimal radical well-mixed σ-ideal, the minimal perfect σ-ideal containing F by $\langle F\rangle,\langle F\rangle_{r},\{F\}$, respectively, which are called the well-mixed closure, the radical well-mixed closure, the perfect closure of F, respectively.

Let K be a σ-field and $\mathbb{Y}=\left(y_{1}, \ldots, y_{n}\right)$ a tuple of σ-indeterminates over K. Then the σ-polynomial ring over K in \mathbb{Y} is the polynomial ring in the variables $y_{i}^{x^{j}}$ for $i=1, \ldots, n$ and $j \in \mathbb{N}$. It is denoted by $K\{\mathbb{Y}\}=K\left\{y_{1}, \ldots, y_{n}\right\}$ and has a natural $K-\sigma$-algebra structure.

2.2. Preliminaries for binomial difference ideals

A $\mathbb{Z}[x]$-lattice is a $\mathbb{Z}[x]$-submodule of $\mathbb{Z}[x]^{n}$ for some n. Since $\mathbb{Z}[x]^{n}$ is Noetherian as a $\mathbb{Z}[x]$-module, we see that any $\mathbb{Z}[x]$-lattice is finitely generated as a $\mathbb{Z}[x]$-module. If $\mathbf{f}_{1}, \ldots, \mathbf{f}_{m}$ generates a $\mathbb{Z}[x]$-lattice L, then we write $L=\left(\mathbf{f}_{1}, \ldots, \mathbf{f}_{m}\right)$.

Let K be a σ-field and $\mathbb{Y}=\left(y_{1}, \ldots, y_{n}\right)$ a tuple of σ-indeterminates over K. For $\mathbf{f}=\left(f_{1}, \ldots, f_{n}\right) \in$ $\mathbb{N}[x]^{n}$, we define $\mathbb{Y}^{\mathbf{f}}=\prod_{i=1}^{n} y_{i}^{f_{i}} . \mathbb{Y}^{\mathbf{f}}$ is called a monomial in \mathbb{Y} and \mathbf{f} is called its support. For $a, b \in K^{*}=$ $K \backslash\{0\}$ and $\mathbf{f}, \mathbf{g} \in \mathbb{N}[x]^{n}, a \mathbb{Y}^{\mathbf{f}}+b \mathbb{Y}^{\mathbf{g}}$ is called a binomial. If $a=1, b=-1$, then $\mathbb{Y}^{\mathbf{f}}-\mathbb{Y}^{\mathbf{g}}$ is called a pure binomial. A (pure) binomial σ-ideal is a σ-ideal generated by (pure) binomials.

For $f \in \mathbb{Z}[x]$, we write $f=f_{+}-f_{-}$, where $f_{+}, f_{-} \in \mathbb{N}[x]$ are the positive part and the negative part of f, respectively. For $\mathbf{f} \in \mathbb{Z}[x]^{n}, \mathbf{f}_{+}=\left(f_{1_{+}}, \ldots, f_{n_{+}}\right), \mathbf{f}_{-}=\left(f_{1_{-}}, \ldots, f_{n_{-}}\right)$.

Definition 2.1. A partial character ρ on a $\mathbb{Z}[x]$-lattice L is a group homomorphism from L to the multiplicative group K^{*} satisfying $\rho(x \mathbf{f})=(\rho(\mathbf{f}))^{x}$ for all $\mathbf{f} \in L$.

A trivial partial character on a $\mathbb{Z}[x]$-lattice L is defined by setting $\rho(\mathbf{f})=1$ for all $\mathbf{f} \in L$.
Given a partial character ρ on a $\mathbb{Z}[x]$-lattice L, we define the following binomial σ-ideal in $K\{\mathbb{Y}\}$,

$$
\mathcal{I}_{L}(\rho):=\left[\mathbb{Y}^{\mathbf{f}_{+}}-\rho(\mathbf{f}) \mathbb{Y}^{\mathbf{f}_{-}} \mid \mathbf{f} \in L\right] .
$$

L is called the support lattice of $\mathcal{I}_{L}(\rho)$. In particular, if ρ is a trivial partial character on L, then the binomial σ-ideal defined by ρ is called a lattice σ-ideal, which is denoted by \mathcal{I}_{L}.

Let m be the multiplicatively closed set generated by $y_{i}^{x^{j}}$ for $i=1, \ldots, n, j \in \mathbb{N}$. A σ-ideal I is said to be normal if for any $M \in \mathbb{m}$ and $p \in K\{\mathbb{Y}\}, M p \in I$ implies $p \in I$. For any σ-ideal I,

$$
I: \mathbb{m}=\{p \in K\{\mathbb{Y}\} \mid \exists M \in \text { ms.t. } M p \in I\}
$$

is a normal σ-ideal.
Lemma 2.2 ([3, Corollary 6.20]). A normal binomial σ-ideal is radical.
Proof. For the proof, please refer to Gao et al. [3].
In [3, Theorem 6.19], it was proved that there is a one-to-one correspondence between normal binomial σ-ideals and partial characters ρ on some $\mathbb{Z}[x]$-lattice L.

In [3], the concept of M-saturation of a $\mathbb{Z}[x]$-lattice was introduced.
Definition 2.3. Assume that K is algebraically closed. If a $\mathbb{Z}[x]$-lattice L satisfies

$$
\begin{equation*}
m \mathbf{f} \in L \Rightarrow\left(x-o_{m}\right) \mathbf{f} \in L \tag{1}
\end{equation*}
$$

where $m \in \mathbb{N}, \mathbf{f} \in \mathbb{Z}[x]^{n}$, and o_{m} is the m-th transforming degree of the unity of K (see [3, Lemma 5.13] for the definition), then it is said to be M-saturated. For any $\mathbb{Z}[x]$-lattice L, the smallest M -saturated $\mathbb{Z}[x]$-lattice containing L is called the M-saturation of L and is denoted by $\operatorname{sat}_{M}(L)$.

The following two lemmas were proved in [3] for the Laurent case and it is easy to generalize to the normal case.

Lemma 2.4 ([3, Theorem 5.21]). Assume that K is algebraically closed and inversive. Let ρ be a partial character on a $\mathbb{Z}[x]$-lattice L. If $\mathcal{I}_{L}(\rho)$ is well mixed, then L is M-saturated. Conversely, if L is M-saturated, then either $\left\langle\mathcal{I}_{L}(\rho)\right\rangle: m=[1]$ or $\mathcal{I}_{L}(\rho)$ is well-mixed.

Lemma 2.5 ([3, Theorem 5.23]). Assume that K is algebraically closed and inversive. Let ρ be a partial character on a $\mathbb{Z}[x]$-lattice L. Then $\left\langle\mathcal{I}_{L}(\rho)\right\rangle_{r}: \mathbb{m}$ is either [1] or a normal binomial σ-ideal whose support lattice is $\operatorname{sat}_{M}(L)$. In particular, $\left\langle\mathcal{I}_{L}\right\rangle_{r}: \mathbb{m}$ is either $[1]$ or $\mathcal{I}_{\text {sat }_{M}(L)}$.

3. Radical well-mixed difference ideal generated by binomials is finitely generated

In this section, we will prove that every radical well-mixed σ-ideal generated by binomials in a σ polynomial ring over an algebraic closed and inversive σ-field is finitely generated as a radical well-mixed σ-ideal. For simplicity, we only consider the case for pure binomials since it is easy to generalize to the general case.

For convenience, for $h \in \mathbb{Z}[x]$, if $\operatorname{deg}\left(h_{+}\right)>\operatorname{deg}\left(h_{-}\right)$, then we set $h^{+}=h_{+}$and $h^{-}=h_{-}$. Otherwise, we set $h^{+}=h_{-}$and $h^{-}=h_{+}$. Moveover, we set $\operatorname{deg}(0)=-1$.

For $a, b, c, d \in \mathbb{N}$, we define $a x^{b}>c x^{d}$ if $b>d$, or $b=d$ and $a>c$. For $h \in \mathbb{Z}[x]$, we use $\operatorname{lt}(h)$ and $\operatorname{lc}(h)$ to denote the leading term and the leading coefficient of h respectively.

Theorem 3.1. For any $\mathbb{Z}[x]$-lattice $L \subseteq \mathbb{Z}[x]^{n},\left\langle\mathcal{I}_{L}\right\rangle_{r}$ is finitely generated as a radical well-mixed σ-ideal.
Proof. Denote the set of all maps from $\{1, \ldots, n\}$ to $\{+,-, 0\}$ by Λ and $\tau_{0} \in \Lambda$ is the map such that $\tau_{0}(i)=0$ for $1 \leq i \leq n$. Let $\Lambda_{0}=\Lambda \backslash\left\{\tau_{0}\right\}$. For any $\tau \in \Lambda_{0}$, we define

$$
\begin{aligned}
A_{\tau}:= & \left\{\left(h_{1}, \ldots, h_{n}\right) \in L \mid \operatorname{lc}\left(h_{i}\right)>0 \text { if } \tau(i)=+, \operatorname{lc}\left(h_{i}\right)<0 \text { if } \tau(i)=-, \text { and } \operatorname{lc}\left(h_{i}\right)=0\right. \\
& \text { if } \tau(i)=0, i=1, \ldots, n\},
\end{aligned}
$$

and

$$
\Sigma_{\tau}:=\left\{\left(\operatorname{deg}\left(h_{1}^{+}\right), \operatorname{lc}\left(h_{1}^{+}\right), \ldots, \operatorname{deg}\left(h_{n}^{+}\right), \operatorname{lc}\left(h_{n}^{+}\right), \operatorname{deg}\left(h_{1}^{-}\right), \ldots, \operatorname{deg}\left(h_{n}^{-}\right)\right) \mid\left(h_{1}, \ldots, h_{n}\right) \in A_{\tau}\right\}
$$

For any $\tau \in \Lambda_{0}$, let G_{τ} be the subset of A_{τ} such that

$$
\left\{\left(\operatorname{deg}\left(g_{1}^{+}\right), \operatorname{lc}\left(g_{1}^{+}\right), \ldots, \operatorname{deg}\left(g_{n}^{+}\right), \operatorname{lc}\left(g_{n}^{+}\right), \operatorname{deg}\left(g_{1}^{-}\right), \ldots, \operatorname{deg}\left(g_{n}^{-}\right)\right) \mid \mathbf{g}=\left(g_{1}, \ldots, g_{n}\right) \in G_{\tau}\right\}
$$

is the set of minimal elements in Σ_{τ} under the product order. It is clear that G_{τ} is a finite set. Let

$$
F_{\tau}:=\left\{\mathbb{Y}^{\mathbf{g}_{+}}-\mathbb{Y}^{\mathbf{g}_{-}} \mid \mathbf{g} \in G_{\tau}\right\} .
$$

We claim that the finite set $\cup_{\tau \in \Lambda_{0}} F_{\tau}$ generates $\left\langle\mathcal{I}_{L}\right\rangle_{r}$ as a radical well-mixed σ-ideal.
Let $\mathcal{I}_{0}=\left\langle\cup_{\tau \in \Lambda_{0}} F_{\tau}\right\rangle_{r}$. We will prove the claim by showing that $\mathbb{Y}^{\mathbf{h}_{+}}-\mathbb{Y}^{\mathbf{h}} \in \mathcal{I}_{0}$ for all $\mathbf{h} \in L$. Let us do induction on $\left(\operatorname{lt}\left(h_{1}^{+}\right), \ldots, \operatorname{lt}\left(h_{n}^{+}\right)\right)$under the product order for $\mathbf{h}=\left(h_{1}, \ldots, h_{n}\right) \in L$. For simplicity, we will assume that $\mathbb{Y}^{\mathbf{h}_{+}}-\mathbb{Y}^{\mathbf{h}}{ }^{-}$has the form

$$
y_{1}^{h_{1}^{+}} \cdots y_{t}^{h_{t}^{+}} y_{t+1}^{h_{++1}^{-}} \cdots y_{n}^{h_{n}^{-}}-y_{1}^{h_{1}^{-}} \cdots y_{t}^{h_{t}^{-}} y_{t+1}^{h_{t+1}^{+}} \cdots y_{n}^{h_{n}^{+}}
$$

where $1 \leq t \leq n$. And without loss of generality, we further assume $\operatorname{lc}\left(h_{i}\right) \neq 0$ for $1 \leq i \leq n$.
The case for $\mathbf{h}=\mathbf{0}$ is trivial. Now for the inductive step. By definition, there exists $\tau \in \Lambda_{0}$ and $\left(g_{1}, \ldots, g_{n}\right) \in G_{\tau}$ such that $\left(h_{1}, \ldots, h_{n}\right) \in A_{\tau}$ and $\operatorname{deg}\left(g_{i}^{+}\right) \leq \operatorname{deg}\left(h_{i}^{+}\right), \operatorname{lc}\left(g_{i}^{+}\right) \leq \operatorname{lc}\left(h_{i}^{+}\right), \operatorname{deg}\left(g_{i}^{-}\right) \leq$ $\operatorname{deg}\left(h_{i}^{-}\right), i=1, \ldots, n$. Let us choose a $j \in\{1, \ldots, n\}$ such that

$$
\operatorname{deg}\left(h_{j}^{+}\right)-\operatorname{deg}\left(g_{j}^{+}\right)=\min _{1 \leq i \leq n}\left\{\operatorname{deg}\left(h_{i}^{+}\right)-\operatorname{deg}\left(g_{i}^{+}\right)\right\} .
$$

Without loss of generality, we can assume $j=1$. Let $s=\operatorname{deg}\left(h_{1}^{+}\right)-\operatorname{deg}\left(g_{1}^{+}\right) \geq 0$. Since $\operatorname{lc}\left(h_{1}^{+}\right) \geq \operatorname{lc}\left(g_{1}^{+}\right)$, there exists an $e \in \mathbb{N}[x]$ such that $\operatorname{deg}(e)<\operatorname{deg}\left(h_{1}^{+}\right)$and $p=h_{1}^{+}+e-x^{s} g_{1}^{+} \in \mathbb{N}[x]$ with $\operatorname{lt}(p)<\operatorname{lt}\left(h_{1}^{+}\right)$. Then

$$
\begin{aligned}
& y_{1}^{e} y_{2}^{x^{s} g_{2}^{+}} \cdots y_{t}^{x^{s} g_{t}^{+}} y_{t+1}^{x^{s} g_{t+1}^{-}} \cdots y_{n}^{x^{s} g_{n}^{-}}\left(y_{1}^{h_{1}^{+}} \cdots y_{t}^{h_{t}^{+}} y_{t+1}^{h_{t+1}^{-}} \cdots y_{n}^{h_{n}^{-}}-y_{1}^{h_{1}^{-}} \cdots y_{t}^{h_{t}^{-}} y_{t+1}^{h_{t+1}^{+}} \cdots y_{n}^{h_{n}^{+}}\right) \\
& =y_{1}^{p+x^{s} g_{1}^{+}} y_{2}^{h_{2}^{+}+x^{s} g_{2}^{+}} \cdots y_{t}^{h_{t}^{+}+x^{s} g_{t}^{+}} y_{t+1}^{h_{t+1}^{-}+x^{s} g_{t+1}^{-}} \cdots y_{n}^{h_{n}^{-}+x^{s} g_{n}^{-}} \\
& -y_{1}^{h_{1}^{-}+e} y_{2}^{h_{2}^{-}+x^{s} g_{2}^{+}} \cdots y_{t}^{h_{t}^{-}+x^{s} g_{t}^{+}} y_{t+1}^{h_{t+1}^{+}+x^{s} g_{t+1}^{-}} \cdots y_{n}^{h_{n}^{+}+x^{s} g_{n}^{-}} \\
& =\left(y_{1}^{g_{1}^{+}} \cdots y_{t}^{g_{t}^{+}} y_{t+1}^{g_{t_{+1}^{-}}} \cdots y_{n}^{g_{n}^{-}}-y_{1}^{g_{1}^{-}} \cdots y_{t}^{g_{t}^{-}} y_{t+1}^{g_{t+1}^{+}} \cdots y_{n}^{g_{n}^{+}}\right)^{x^{s}} y_{1}^{p} y_{2}^{h_{2}^{+}} \cdots y_{t}^{h_{t}^{+}} y_{t+1}^{h_{t+1}^{-}} \cdots y_{n}^{h_{n}^{-}} \\
& +y_{1}^{p+x^{s} g_{1}^{-}} y_{2}^{h_{2}^{+}+x^{s} g_{2}^{-}} \cdots y_{t}^{h_{t}^{+}+x^{s} g_{t}^{-}} y_{t+1}^{h_{t+1}^{-}+x^{s} g_{t+1}^{+}} \cdots y_{n}^{h_{n}^{-}+x^{s} g_{n}^{+}} \\
& -y_{1}^{h_{1}^{-}+e} y_{2}^{h_{2}^{-}+x^{s} g_{2}^{+}} \cdots y_{t}^{h_{t}^{-}+x^{s} g_{t}^{+}} y_{t+1}^{h_{t+1}^{+}+x^{s} g_{t+1}^{-}} \cdots y_{n}^{h_{n}^{+}+x^{s} g_{n}^{-}} \\
& =\left(y_{1}^{g_{1}^{+}} \cdots y_{t}^{g_{t}^{+}} y_{t+1}^{g_{t+1}^{-}} \cdots y_{n}^{g_{n}^{-}}-y_{1}^{g_{1}^{-}} \cdots y_{t}^{g_{t}^{-}} y_{t+1}^{g_{t+1}^{+}} \cdots y_{n}^{g_{n}^{+}}\right)^{x^{s}} y_{1}^{p} y_{2}^{h_{2}^{+}} \cdots y_{t}^{h_{t}^{+}} y_{t+1}^{h_{t+1}^{-}} \cdots y_{n}^{h_{n}^{-}} \\
& +y_{1}^{d_{1}} \cdots y_{n}^{d_{n}}\left(y_{1}^{w_{1+}} \ldots y_{n}^{w_{n_{+}}}-y_{1}^{w_{1}} \ldots y_{n}^{w_{n_{-}}}\right),
\end{aligned}
$$

for some $d_{1}, \ldots, d_{n} \in \mathbb{N}[x]$ and some $\mathbf{w}=\left(w_{1}, \ldots, w_{n}\right) \in \mathbb{Z}[x]^{n}$. It is clear that $\mathbf{w} \in L$. Since $\operatorname{lt}\left(p+x^{s} g_{1}^{-}\right)<\operatorname{lt}\left(h_{1}^{+}\right), \operatorname{lt}\left(h_{1}^{-}+e\right)<\operatorname{lt}\left(h_{1}^{+}\right)$, then $\operatorname{lt}\left(w_{1}^{+}\right)<\operatorname{lt}\left(h_{1}^{+}\right)$, and because of the choice of j, we have $s+\operatorname{deg}\left(g_{i}^{+}\right) \leq \operatorname{deg}\left(h_{i}^{+}\right)$for $2 \leq i \leq n$, from which it follows $\operatorname{lt}\left(w_{i}^{+}\right) \leq \operatorname{lt}\left(h_{i}^{+}\right), 2 \leq$ $i \leq n$. Therefore, $\left(\operatorname{lt}\left(w_{1}^{+}\right), \ldots, \operatorname{lt}\left(w_{n}^{+}\right)\right)<\left(\operatorname{lt}\left(h_{1}^{+}\right), \ldots, \operatorname{lt}\left(h_{n}^{+}\right)\right)$. Thus by the induction hypothesis, $y_{1}^{w_{1+}} \cdots y_{n}^{w_{n+}}-y_{1}^{w_{1-}} \cdots y_{n}^{w_{n}} \in \mathcal{I}_{0}$ and hence

$$
y_{1}^{e} y_{2}^{x_{s}^{s} g_{2}^{+}} \cdots y_{t}^{x_{t}^{s} g_{t}^{+}} y_{t+1}^{x^{s} g_{t+1}^{-}} \cdots y_{n}^{x^{s} g_{n}^{-}}\left(\mathbb{Y}^{\mathbf{h}_{+}}-\mathbb{Y}^{\mathbf{h}_{-}}\right) \in \mathcal{I}_{0}
$$

So by the properties of radical well-mixed σ-ideals, we have

$$
y_{1}^{x^{x} g_{1}^{+}} \cdots y_{t}^{x^{s} g_{t}^{+}} y_{t+1}^{x^{s} g_{t+1}^{-}} \cdots y_{n}^{x^{s} g_{n}^{-}}\left(\mathbb{Y}^{\mathbf{h}_{+}}-\mathbb{Y}^{\mathbf{h}_{-}}\right) \in \mathcal{I}_{0}
$$

and then

$$
y_{1}^{x^{s} g_{1}^{-}} \cdots y_{t}^{x^{s} g_{t}^{-}} y_{t+1}^{x^{s} g_{t+1}^{+}} \cdots y_{n}^{x^{s} g_{n}^{+}}\left(\mathbb{Y}^{\mathbf{h}_{+}}-\mathbb{Y}^{\mathbf{h}_{-}}\right) \in \mathcal{I}_{0} .
$$

If $s>0$, let $s^{\prime}=\max \left\{0, s-\min _{1 \leq i \leq t}\left\{\operatorname{deg}\left(g_{i}^{+}\right)-\operatorname{deg}\left(g_{i}^{-}\right)\right\}\right\}<s$. Again by the properties of radical well-mixed σ-ideals, we have

$$
y_{1}^{x^{s^{\prime}} g_{1}^{+}} \cdots y_{t}^{x^{x^{\prime}} g_{t}^{+}} y_{t+1}^{x^{s^{s}} g_{+1}^{+}} \cdots y_{n}^{x^{s} g_{n}^{+}}\left(\mathbb{Y}^{\mathbf{h}_{+}}-\mathbb{Y}^{\mathbf{h}}\right) \in \mathcal{I}_{0}
$$

and then

$$
y_{1}^{x^{s^{\prime}} g_{1}^{-}} \cdots y_{t}^{x^{x^{s}} g_{t}^{-}} y_{t+1}^{x^{s} g_{+1}^{+}} \cdots y_{n}^{x^{s} g_{n}^{+}}\left(\mathbb{Y}^{\mathbf{h}_{+}}-\mathbb{Y}^{\mathbf{h}_{-}}\right) \in \mathcal{I}_{0} .
$$

If $s^{\prime}>0$, repeat the above process, and we eventually obtain

$$
y_{1}^{g_{1}^{-}} \cdots y_{t}^{g_{t}^{-}} y_{t+1}^{x^{s} g_{t+1}^{+}} \cdots y_{n}^{x^{s}} g_{n}^{+}\left(\mathbb{Y}^{\mathbf{h}_{+}}-\mathbb{Y}^{\mathbf{h}_{-}}\right) \in \mathcal{I}_{0} .
$$

Since $\operatorname{deg}\left(g_{i}^{-}\right) \leq \operatorname{deg}\left(h_{i}^{-}\right), 1 \leq i \leq t$ and $s+\operatorname{deg}\left(g_{i}^{+}\right) \leq \operatorname{deg}\left(h_{i}^{+}\right), t+1 \leq i \leq n$, then by the properties of radical well-mixed σ-ideals, we have

$$
\begin{equation*}
\mathbb{Y}^{\mathbf{h}_{-}}\left(\mathbb{Y}^{\mathbf{h}_{+}}-\mathbb{Y}^{\mathbf{h}_{-}}\right) \in \mathcal{I}_{0} . \tag{2}
\end{equation*}
$$

Similarly, we also have

$$
\begin{equation*}
\mathbb{Y}^{\mathbf{h}_{+}}\left(\mathbb{Y}^{\mathbf{h}_{+}}-\mathbb{Y}^{\mathbf{h}_{-}}\right) \in \mathcal{I}_{0} \tag{3}
\end{equation*}
$$

Combining (2) and (3), we obtain $\left(\mathbb{Y}^{\mathbf{h}_{+}}-\mathbb{Y}^{\mathbf{h}_{-}}\right)^{2} \in \mathcal{I}_{0}$, and hence $\mathbb{Y}^{\mathbf{h}_{+}}-\mathbb{Y}^{\mathbf{h}_{-}} \in \mathcal{I}_{0}$. So we complete the proof.

Corollary 3.2. Let $L \subseteq \mathbb{Z}[x]^{n}$ be a $\mathbb{Z}[x]$-lattice such that \mathcal{I}_{L} is well-mixed, then \mathcal{I}_{L} is finitely generated as a radical well-mixed σ-ideal.

Proof. It is immediate from Theorem 3.1 since \mathcal{I}_{L} is already a radical well-mixed σ-ideal.
Example 3.3. Let $L=\left(\binom{x-1}{1-x}\right) \subseteq \mathbb{Z}[x]^{2}$ be a $\mathbb{Z}[x]$-lattice. Since L is saturated, \mathcal{I}_{L} is a σ-prime σ-ideal [3, Corollary 6.22(c)] and hence well mixed. Then by Theorem 3.1, $\mathcal{I}_{L}=\left[y_{1}^{x^{i}} y_{2}-y_{1} y_{2}^{x^{i}}: i \in \mathbb{N}^{*}\right]=$ $\left\langle y_{1}^{x} y_{2}-y_{1} y_{2}^{x}\right\rangle_{r}$.

Example 3.4. Let $L=\left(\binom{x^{2}+1-x}{x-1}\right) \subseteq \mathbb{Z}[x]^{2}$ be a $\mathbb{Z}[x]$-lattice. Since L is saturated, \mathcal{I}_{L} is a σ-prime σ-ideal and hence well-mixed. Then by Theorem 3.1, $\mathcal{I}_{L}=\left\langle y_{1}^{x^{2}+1} y_{2}^{x}-y_{1}^{x} y_{2}, y_{1}^{x^{3}+1} y_{2}^{x^{2}}-y_{2}\right\rangle_{r}$.

To show that radical well-mixed σ-ideals generated by binomials are finitely generated, we need the following lemma.

Lemma 3.5 ([7, Proposition 5.2]). Let F and G be subsets of any σ-ring R. Then

$$
\langle F\rangle_{r} \cap\langle G\rangle_{r}=\langle F G\rangle_{r} .
$$

As a corollary, if I and J are two σ-ideals of R, then

$$
\langle I\rangle_{r} \cap\langle J\rangle_{r}=\langle I \cap J\rangle_{r}=\langle I J\rangle_{r} .
$$

Proof. For the proof, please refer to Wang [7].

Lemma 3.6. Assume that K is algebraically closed and inversive. Suppose that $I \subseteq K\{\mathbb{Y}\}$ is a pure binomial σ-ideal. Then $\langle I\rangle_{r}: \mathrm{m}$ is finitely generated as a radical well-mixed σ-ideal.

Proof. Since $I: \mathbb{m}$ is a normal binomial σ-ideal, there exists a $\mathbb{Z}[x]$-lattice L such that $I: \mathbb{m}=\mathcal{I}_{L}$. Note that $\langle I\rangle_{r}: \mathbb{m}=\langle I: \mathbb{m}\rangle_{r}: \mathbb{m}$, so by Lemma $2.5,\langle I\rangle_{r}: \mathbb{m}$ is $[1]$ or $\mathcal{I}_{\text {sat }_{M}(L)}$. Since $\langle I\rangle_{r}$ is radical well mixed, it is easy to show that $\langle I\rangle_{r}: \mathbb{m}$ is also radical well mixed. So by Corollary $3.2,\langle I\rangle_{r}: \mathbb{m}$ is finitely generated as a radical well-mixed σ-ideal.

Lemma 3.7. Assume that K is algebraically closed and inversive. Suppose that $I \subseteq K\{\mathbb{Y}\}$ is a pure binomial σ-ideal. Then

$$
\langle I\rangle_{r}=\langle I\rangle_{r}: \mathbb{m} \cap\left\langle I, y_{p_{1}}^{x_{1}{ }_{1}}\right\rangle_{r} \cap \cdots \cap\left\langle I, y_{p_{l}}^{x_{l}}\right\rangle_{r}
$$

for some $\left\{p_{1}, \ldots, p_{l}\right\} \subseteq\{1, \ldots, n\}$ and some $\left(a_{1}, \ldots, a_{l}\right) \in \mathbb{N}^{l}$.
Proof. By Lemma 3.6, $\langle I\rangle_{r}: \mathrm{m}$ is finitely generated as a radical well-mixed σ-ideal. Therefore, there exist $f_{1}, \ldots, f_{s} \in\langle I\rangle_{r}: \mathbb{m}$ and $m_{1}, \ldots, m_{s} \in \mathbb{m}$ such that $\langle I\rangle_{r}: \mathbb{m}=\left\langle f_{1}, \ldots, f_{s}\right\rangle_{r}$ and $m_{1} f_{1}, \ldots, m_{s} f_{s} \in\langle I\rangle_{r}$. Then by Lemma 3.5,

$$
\begin{aligned}
\langle I\rangle_{r} & =\left\langle I, f_{1}\right\rangle_{r} \cap\left\langle I, m_{1}\right\rangle_{r} \\
& =\left\langle I, f_{1}, f_{2}\right\rangle_{r} \cap\left\langle I, f_{1}, m_{2}\right\rangle_{r} \cap\left\langle I, m_{1}\right\rangle_{r} \\
& =\left\langle I, f_{1}, f_{2}\right\rangle_{r} \cap\left\langle I, m_{1} m_{2}\right\rangle_{r} \\
& =\cdots \\
& =\left\langle f_{1}, \ldots, f_{s}\right\rangle_{r} \cap\left\langle I, m_{1} \cdots m_{s}\right\rangle_{r} \\
& =\langle I\rangle_{r}: \mathbb{m} \cap\left\langle I, y_{p_{1}}^{a_{1}}\right\rangle_{r} \cap \cdots \cap\left\langle I, y_{p_{l}}^{a_{l}}\right\rangle_{r},
\end{aligned}
$$

for some $\left\{p_{1}, \ldots, p_{l}\right\} \subseteq\{1, \ldots, n\}$ and some $\left(a_{1}, \ldots, a_{l}\right) \in \mathbb{N}^{l}$.
Suppose that $\left\{j_{1}, \ldots, j_{t}\right\} \subseteq\{1, \ldots, n\},\left(a_{1}, \ldots, a_{t}\right) \in \mathbb{N}^{t}$ and $I_{0} \subseteq K\left\{y_{1}, \ldots, y_{n}\right\}$ is a pure binomial σ-ideal. Let $T_{j_{1} \ldots j_{t}}^{a_{1} \ldots a_{t}}=\left\{y_{1}^{f_{1}} \ldots y_{n}^{f_{n}} \mid f_{1}, \ldots, f_{n} \in \mathbb{N}[x], \operatorname{deg}\left(f_{j_{i}}\right)<a_{i}, 1 \leq i \leq t\right\}$. We say that I_{0} is saturated with respect to $\left\{y_{j_{1}}^{x_{1}}, \ldots, y_{j_{t}}^{x_{t}}\right\}$ if $I_{0}=I_{0}: T_{j_{1} \ldots j_{t}}^{a_{1}, \ldots a_{t}}$, that is, for any $g \in K\left\{y_{1}, \ldots, y_{n}\right\}$ and $M \in T_{j_{1} \ldots j_{t}}^{a_{1} \ldots a_{t}}, M g \in I_{0}$ implies $g \in I_{0}$. Let $I \subseteq K\left\{y_{1}, \ldots, y_{n}\right\}$ be a pure binomial σ-ideal. The minimal σ-ideal containing I which is saturated with respect to $\left\{y_{j_{1}}^{x_{1}}, \ldots, y_{j_{t}}^{x_{t}}\right\}$ is called the $T_{j_{1} \ldots j_{t}}^{a_{1} \ldots a_{t}}$-saturated closure of I, denoted by $N_{j_{1} \ldots j_{t}}^{a_{1} \ldots a_{t}}(I)$. We will give a concrete description of the $T_{j_{1} \ldots j_{t}}^{a_{1} \ldots a_{t}}$ saturated closure of a pure binomial σ-ideal I. Let $I^{[0]}=I$ and recursively define $I^{[i]}=\left[I^{[i-1]}: T_{j_{1} \ldots j_{t}}^{a_{1} \ldots a_{t}}\right](i=1,2, \ldots)$. The following lemma is easy to check by definition.

Lemma 3.8. Let $I \subseteq K\left\{y_{1}, \ldots, y_{n}\right\}$ be a pure binomial σ-ideal. Then

$$
\begin{equation*}
N_{j_{1} \ldots j_{t}}^{a_{1} \ldots a_{t}}(I)=\cup_{i=0}^{\infty} I^{[i]} . \tag{4}
\end{equation*}
$$

Let $I_{0} \subseteq K\left\{y_{1}, \ldots, y_{n}\right\}$ be a pure binomial σ-ideal. Then we say $I=\left\langle I_{0}, y_{j_{1}}^{x_{1}}, \ldots, y_{j_{t}}^{a_{t}}\right\rangle_{r}$ is quasinormal if I_{0} is saturated with respect to $\left\{y_{j_{1}}^{x_{1}}, \ldots, y_{j_{t}}^{\alpha_{t}}\right\}$ and for any binomial $\mathbb{Y}^{\mathbf{f}}-\mathbb{Y}^{\mathbf{g}} \in I_{0}$, if $\mathbb{Y}^{\mathbf{f}} \in$ $\left[y_{j_{1}}^{x^{a_{1}}}, \ldots, y_{j_{t}}^{x^{a_{t}}}\right]$, then $\mathbb{Y}^{\mathbf{g}} \in\left[y_{j_{1}}^{x^{a_{1}}}, \ldots, y_{j_{t}}^{x^{a_{t}}}\right]$. In analogy with Theorem 3.1, we can prove the following lemma.

Lemma 3.9. Let $\left\{j_{1}, \ldots, j_{t}\right\} \subseteq\{1, \ldots, n\},\left(a_{1}, \ldots, a_{t}\right) \in \mathbb{N}^{t}$ and $I_{0} \subseteq K\left\{y_{1}, \ldots, y_{n}\right\}$ a pure binomial σ-ideal. Assume that $I=\left\langle I_{0}, y_{j_{1}}^{x^{a_{1}}}, \ldots, y_{j_{t}}^{x^{a_{t}}}\right\rangle_{r}$ is quasi-normal. Then I is finitely generated as a radical well-mixed σ-ideal.

Proof. Let $J=\left\{\mathbb{Y}^{\mathbf{h}_{+}}-\mathbb{Y}^{\mathbf{h}_{-}} \in I_{0} \mid \mathbb{Y}^{\mathbf{h}_{+}}, \mathbb{Y}^{\mathbf{h}_{-}} \in T_{j_{1} \ldots j_{t}}^{a_{1} \ldots a_{t}}\right\}$. By a similar argument with Theorem 3.1, we can prove $\langle J\rangle_{r}$ is finitely generated as a radical well-mixed σ-ideal. It follows that $I=\left\langle J, y_{j_{1}}^{x^{a_{1}}}, \ldots, y_{j_{t}}^{x^{a_{t}}}\right\rangle_{r}$ is finitely generated as a radical well-mixed σ-ideal.

Lemma 3.10. Suppose that $\left\{j_{1}, \ldots, j_{t}\right\} \subseteq\{1, \ldots, n\},\left(a_{1}, \ldots, a_{t}\right) \in \mathbb{N}^{t}$ and $I \subseteq K\{\mathbb{Y}\}$ is a pure binomial σ ideal. Let $I_{0}=N_{j_{1} \ldots j_{t}}^{a_{1} \ldots a_{t}}(I)$. Assume that $\left\langle I_{0}, y_{j_{1}}^{x_{1}}, \ldots, y_{j_{t}}^{x_{t}}\right\rangle_{r}$ is quasi-normal. Then there exist $\left\{p_{1}, \ldots, p_{l}\right\} \subseteq$ $\{1, \ldots, n\}$ and $\left(b_{1}, \ldots, b_{l}\right) \in \mathbb{N}^{l}$ such that

$$
\left\langle I, y_{j_{1}}^{x_{1}^{a_{1}}}, \ldots, y_{j_{t}}^{x_{t}^{a_{t}}}\right\rangle_{r}=\left\langle I_{0}, y_{j_{1}}^{x_{1}^{a_{1}}}, \ldots, y_{j_{t}}^{x_{t}}\right\rangle_{r} \cap \bigcap_{1 \leq k \leq l}\left\langle I, y_{j_{1}}^{x_{1}}, \ldots, y_{j_{t}}^{x_{t}}, y_{p_{k}}^{x_{k} b_{k}}\right\rangle_{r}
$$

where either $p_{k} \notin\left\{j_{1}, \ldots, j_{t}\right\}$, or $p_{k}=j_{m}$ and $b_{k}<a_{m}$ for $1 \leq k \leq l$.
Proof. Since $\left\langle I_{0}, y_{j_{1}}^{x_{1}}, \ldots, y_{j_{t}}^{x_{t}}\right\rangle_{r}$ is quasi-normal, by Lemma 3.9, it is finitely generated as a radical well-mixed σ-ideal. That is to say, there exist $f_{1}, \ldots, f_{s} \in I_{0}$ such that

$$
\left\langle I_{0}, y_{j_{1}}^{x_{1}}, \ldots, y_{j_{t}}^{x_{t}^{a_{t}}}\right\rangle_{r}=\left\langle f_{1}, \ldots, f_{s}, y_{j_{1}}^{x_{1}^{a_{1}}}, \ldots, y_{j_{t}}^{x_{t}^{a_{t}}}\right\rangle_{r} .
$$

By (4), $I_{0}=\cup_{i=0}^{\infty} I^{[i]}$, so there exists $i \in \mathbb{N}$ such that $f_{1}, \ldots, f_{s} \in I^{[i]}$. By definition, there exist $g_{i 1}, \ldots, g_{i l_{i}} \in$ $I^{[i-1]}: T_{j_{1} \ldots j_{t}}^{a_{1} \ldots a_{t}}$ and $m_{i 1}, \ldots, m_{i l_{i}} \in T_{j_{1} \ldots j_{t}}^{a_{1} \ldots a_{t}}$ such that $f_{1}, \ldots, f_{s} \in\left[g_{i 1}, \ldots, g_{i_{i}}\right]$ and $m_{i 1} g_{i 1}, \ldots, m_{i l_{i}} g_{i i_{i}} \in$ $I^{[i-1]}$. There further exist $g_{i-11}, \ldots, g_{i-1 l_{i-1}} \in I^{[i-2]}: T_{j_{1} \ldots j_{t}}^{a_{1} \ldots a_{t}}$ and $m_{i-11}, \ldots, m_{i-1 l_{i-1}} \in T_{j_{1} \ldots j t}^{a_{1} \ldots a_{t}}$ such that $m_{i 1} g_{i 1}, \ldots, m_{i l_{i}} g_{i_{i}} \in\left[g_{i-11}, \ldots, g_{\left.i-1 l_{i-1}\right]}\right]$ and $m_{i-11} g_{i-11}, \ldots, m_{i-1 l_{i-1}} g_{i-1 l_{i-1}} \in I^{[i-2]}$. Iterating this process, we eventually have there exist $g_{11}, \ldots, g_{1 l_{1}} \in I: T_{j_{1} \ldots j_{t}}^{a_{1} \ldots a_{t}}$ and $m_{11}, \ldots, m_{1 l_{1}} \in T_{j_{1} \ldots j_{t}}^{a_{1} \ldots a_{t}}$ such that $m_{21} g_{21}, \ldots, m_{2 l_{2}} g_{2 l_{2}} \in\left[g_{11}, \ldots, g_{1 l_{1}}\right]$ and $m_{11} g_{11}, \ldots, m_{1 l_{1}} g_{1 l_{1}} \in I$. Hence by Lemma 3.5, we obtain

$$
\begin{aligned}
& \left\langle I, y_{j_{1}}^{x^{a_{1}}}, \ldots, y_{j_{t}}^{x^{a_{t}}}\right\rangle_{r}=\left\langle I, g_{11}, \ldots, g_{1 l_{1}}, \chi_{j_{1}}^{x_{1}}, \ldots, y_{j_{t}}^{x_{t}^{a_{t}}}\right\rangle_{r} \cap\left\langle I, m_{11} \cdots m_{1 l_{1}}, y_{j_{1}}^{x^{a_{1}}}, \ldots, y_{j_{t}}^{x^{a_{t}}}\right\rangle_{r} \\
& =\left\langle I, g_{21}, \ldots, g_{2 l_{2}}, g_{11}, \ldots, g_{1 l_{1}}, y_{j_{1}}^{\chi_{1}}, \ldots, y_{j_{t}}^{\chi_{t}{ }^{a_{t}}}\right\rangle_{r} \\
& \cap\left\langle I, m_{21} \cdots m_{2 l_{2}} m_{11} \cdots m_{1 l_{1}}, y_{j_{1}}^{x_{1}}, \ldots, y_{j_{t}}^{a_{t}}\right\rangle_{r} \\
& =\cdots \\
& =\left\langle I, g_{i 1}, \ldots, g_{i l_{i}}, \ldots, g_{11}, \ldots, g_{1 l_{1}}, y_{j_{1}}^{x^{a_{1}}}, \ldots, y_{j_{t}}^{x^{a_{t}}}\right\rangle_{r} \\
& \cap\left\langle I, m_{i 1} \cdots m_{i_{i}} \cdots m_{11} \cdots m_{1 l_{1}}, y_{j_{1}}^{x^{a_{1}}}, \ldots, y_{j_{t}}^{x^{a_{t}}}\right\rangle_{r} \\
& =\left\langle I_{0}, y_{j_{1}}^{\chi^{a_{1}}}, \ldots, y_{j_{t}}^{x_{t}^{a_{t}}}\right\rangle_{r} \cap \bigcap_{1 \leq k \leq l}\left\langle I, y_{j_{1}}^{x_{1}^{a_{1}}}, \ldots, y_{j_{t}}^{x_{t}}, y_{p_{k}}^{x^{b_{k}}}\right\rangle_{r}
\end{aligned}
$$

for some $\left\{p_{1}, \ldots, p_{l}\right\} \subseteq\{1, \ldots, n\}$ and some $\left(b_{1}, \ldots, b_{l}\right) \in \mathbb{N}^{l}$, where either $p_{k} \notin\left\{j_{1}, \ldots, j_{t}\right\}$, or $p_{k}=j_{m}$ and $b_{k}<a_{m}$ for $1 \leq k \leq l$.

From the proof of Lemma 3.10, we obtain the following lemma which will be used later.
Lemma 3.11. Suppose that $\left\{j_{1}, \ldots, j_{t}\right\} \subseteq\{1, \ldots, n\},\left(a_{1}, \ldots, a_{t}\right) \in \mathbb{N}^{t}$ and $I \subseteq K\{\mathbb{Y}\}$ is a pure binomial σ-ideal. Let $h \in N_{j_{1} \ldots j_{t}}^{a_{1} \ldots a_{t}}(I) \backslash$. Then there exist $\left\{p_{1}, \ldots, p_{l}\right\} \subseteq\{1, \ldots, n\}$ and $\left(b_{1}, \ldots, b_{l}\right) \in \mathbb{N}^{l}$ such that

$$
\left\langle I, y_{j_{1}}^{x^{a_{1}}}, \ldots, y_{j_{t}}^{x_{t}^{a_{t}}}\right\rangle_{r}=\left\langle I^{\prime}, y_{j_{1}}^{x_{1}^{a_{1}}}, \ldots, y_{j_{t}}^{x_{t}}\right\rangle_{r} \cap \bigcap_{1 \leq k \leq l}\left\langle I, y_{j_{1}}^{x_{1}^{a_{1}}}, \ldots, y_{j_{t}}^{x_{t}}, y_{p_{k}}^{x_{k}^{b_{k}}}\right\rangle_{r},
$$

where $I^{\prime} \supseteq[I, h]$ is a pure binomial σ-ideal and either $p_{k} \notin\left\{j_{1}, \ldots, j_{t}\right\}$, or $p_{k}=j_{m}$ and $b_{k}<a_{m}$ for $1 \leq k \leq l$.

Lemma 3.12. Suppose that $\left\{j_{1}, \ldots, j_{t}\right\} \subseteq\{1, \ldots, n\},\left(a_{1}, \ldots, a_{t}\right) \in \mathbb{N}^{t}$ and $I \subseteq K\{\mathbb{Y}\}$ is a pure binomial σ-ideal. Assume that there exists a binomial $\mathbb{Y}^{\mathbf{f}}-\mathbb{Y}^{\mathbf{g}} \in I$ such that $\mathbb{Y}^{\mathbf{f}} \in\left[y_{j_{1}}^{x_{1}}, \ldots, y_{j_{t}}^{x^{a_{t}}}\right]$ and $\mathbb{Y}^{\mathbf{g}} \notin$ $\left[y_{j_{1}}^{x_{1}}, \ldots, y_{j_{t}}^{x_{t}^{a_{t}}}\right]$. Then there exist $\left\{p_{1}, \ldots, p_{l}\right\} \subseteq\{1, \ldots, n\}$ and $\left(b_{1}, \ldots, b_{l}\right) \in \mathbb{N}^{l}$ such that

$$
\left\langle I, y_{j_{1}}^{x_{1}}, \ldots, y_{j_{t}}^{x_{t}^{a_{t}}}\right\rangle_{r}=\bigcap_{1 \leq k \leq l}\left\langle I, y_{j_{1}}^{x_{1}}, \ldots, y_{j_{t}}^{x_{t}^{a_{t}}}, y_{p_{k}}^{b_{k}}\right\rangle_{r},
$$

where either $p_{k} \notin\left\{j_{1}, \ldots, j_{t}\right\}$, or $p_{k}=j_{m}$ and $b_{k}<a_{m}$ for $1 \leq k \leq l$.
Proof. Since there exists a binomial $\mathbb{Y}^{\mathbf{f}}-\mathbb{Y}^{\mathbf{g}} \in I$ such that $\mathbb{Y}^{\mathbb{f}} \in\left[y_{j_{1}}^{x_{1}}, \ldots, y_{j_{t}}^{a_{t}}\right]$ and $\mathbb{Y}^{\mathbf{g}} \notin\left[y_{j_{1}}^{x_{1}}, \ldots, y_{j_{t}}^{x^{a_{t}}}\right]$, then $\mathbb{Y}^{\mathbf{g}} \in\left\langle I, y_{j_{1}}^{x^{a_{1}}}, \ldots, y_{j_{t}}^{\chi_{t} t}\right\rangle_{r}$. Therefore, by the properties of radical well-mixed σ-ideals, there exist $\left\{p_{1}, \ldots, p_{l}\right\} \subseteq\{1, \ldots, n\}$ and $\left(b_{1}, \ldots, b_{l}\right) \in \mathbb{N}^{l}$ satisfying either $p_{k} \notin\left\{j_{1}, \ldots, j_{t}\right\}$, or $p_{k}=j_{m}$ and $b_{k}<a_{m}$, for $1 \leq k \leq l$ such that $y_{p_{1}}^{x_{1}} \cdots y_{p_{l}}^{x_{l}^{b_{l}}} \in\left\langle I, y_{j_{1}}^{x^{a_{1}}}, \ldots, y_{j_{t}}^{x^{a_{t}}}\right\rangle_{r}$. Hence,

$$
\left\langle I, y_{j_{1}}^{a_{1}}, \ldots, y_{j_{t}}^{x_{t}^{a_{t}}}\right\rangle_{r}=\bigcap_{1 \leq k \leq l}\left\langle I, y_{j_{1}}^{x_{1}^{a_{1}}}, \ldots, y_{j_{t}}^{x_{t}^{a_{t}}}, y_{p_{k}}^{y_{k} b_{k}}\right\rangle_{r} .
$$

Lemma 3.13. Let $i \in\{1, \ldots, n\}$ and $a \in \mathbb{N}$. Suppose that $I \subseteq K\{\mathbb{Y}\}$ is a pure binomial σ-ideal. Then

$$
\left\langle I, y_{i}^{x^{a}}\right\rangle_{r}=\bigcap_{\left(j_{1}, \ldots, j_{t}\right),\left(b_{j_{1}}, \ldots, b_{j_{t}}\right)}\left\langle I_{j_{1} \ldots j_{t}}^{b_{j_{1}} \ldots b_{j_{t}}}, y_{j_{1}}^{x_{b_{j_{1}}}}, \ldots, y_{j_{t}}^{x_{j_{j}}}\right\rangle_{r}
$$

is a finite intersection, where for each member in the intersection, $I_{j_{1} \ldots j_{t}}^{b_{j} \ldots b_{j_{t}}}$ is a pure binomial σ-ideal and either $I_{j_{1} \ldots j_{t}}^{b_{j_{1}} \ldots b_{j_{t}}} \subseteq\left[y_{j_{1}}^{x^{b_{1}}}, \ldots, y_{j_{t}}^{b_{j_{t}}}\right]$, or $\left\langle I_{j_{1} \ldots j_{t}}^{b_{j_{1}} \ldots . b_{j_{t}}}, y_{j_{1}}^{x_{j_{1}}}, \ldots, y_{j_{t}}^{x_{b_{t}}}\right\rangle_{r}$ is quasi-normal.

Proof. Use Lemma 3.12 repeatedly and assume that we obtain a decomposition as follows:

$$
\begin{equation*}
\left\langle I, y_{i}^{x^{a}}\right\rangle_{r}=\bigcap_{\left(j_{1}, \ldots, j_{t}\right),\left(c_{j_{1}}, \ldots, c_{j t}\right)}\left\langle I, y_{j_{1}}^{x_{j_{1}}}, \ldots, y_{j_{t}}^{c_{j_{t}}}\right\rangle_{r} . \tag{5}
\end{equation*}
$$

For each member in the intersection (5), if $I \subseteq\left[y_{j_{1}}^{x_{c_{1}}}, \ldots, y_{j_{t}}^{x_{j_{t}}}\right]$, then we have nothing to do. Otherwise, if there exists a binomial $\mathbb{Y}^{\mathbf{f}}-\mathbb{Y}^{\mathbf{g}} \in I_{0} \backslash I$ such that $\mathbb{Y}^{\mathbf{f}} \in\left[y_{j_{1}}^{x_{j_{1}}}, \ldots, y_{j_{t}}^{x_{j_{t}}}\right]$ and $\mathbb{Y}^{\mathbf{g}} \notin$ $\left[y_{j_{1}}^{x_{j_{1}}}, \ldots, y_{j_{t}}^{x_{j_{t}}}\right]$, then by Lemma 3.11,

$$
\left\langle I, y_{j_{1}}^{x_{j_{1}}^{j_{1}}}, \ldots, y_{j_{t}}^{x_{j_{t}}}\right\rangle_{r}=\left\langle I^{\prime}, y_{j_{1}}^{x_{j_{1}}}, \ldots, y_{j_{t}}^{x_{j}^{c_{j_{t}}}}\right\rangle_{r} \cap \bigcap_{1 \leq k \leq l}\left\langle I, y_{j_{1}}^{x_{j_{1}}^{j_{1}}}, \ldots, y_{j_{t}}^{x_{j t}^{j_{j}}}, y_{p_{k}}^{x^{d_{k}}}\right\rangle_{r},
$$

where $I^{\prime} \supseteq\left[I, \mathbb{Y}^{\mathbf{f}}-\mathbb{Y}^{\mathbf{g}}\right]$ is a pure binomial σ-ideal and either $p_{k} \notin\left\{j_{1}, \ldots, j_{t}\right\}$, or $p_{k}=j_{m}$ and $d_{k}<c_{j_{m}}$ for $1 \leq k \leq l$. Moreover, by Lemma 3.12, we have

$$
\left\langle I^{\prime}, y_{j_{1}}^{x^{j_{1}}}, \ldots, y_{j_{t}}^{x_{j_{t}}}\right\rangle_{r}=\bigcap_{1 \leq k \leq l^{\prime}}\left\langle I^{\prime}, y_{j_{1}}^{x_{j_{1}}}, \ldots, y_{j_{t}}^{x_{j t}^{j_{j}}}, y_{s_{k}}^{x_{k}}\right\rangle_{r},
$$

where either $s_{k} \notin\left\{j_{1}, \ldots, j_{t}\right\}$, or $s_{k}=j_{m}$ and $e_{k}<c_{j_{m}}$ for $1 \leq k \leq l^{\prime}$. Thus we obtain

$$
\begin{align*}
\left\langle I, y_{j_{1}}^{x^{c_{1}}}, \ldots, y_{j_{t}}^{x_{j t} j_{t}}\right\rangle_{r}= & \bigcap_{1 \leq k \leq l^{\prime}}\left\langle I^{\prime}, y_{j_{1}}^{c_{j_{1}}}, \ldots, y_{j_{t}}^{x^{c_{j t}}}, y_{s_{k}}^{x_{k}^{\varepsilon_{k}}}\right\rangle_{r} \cap \tag{6}\\
& \bigcap_{1 \leq k \leq l}\left\langle I, y_{j_{1}}^{x_{j_{1}}}, \ldots, y_{j_{t}}^{x_{j_{t}}}, y_{p_{k}}^{x_{k}^{d_{k}}}\right\rangle_{r} .
\end{align*}
$$

By substituting (6) into (5), we rewrite (5) as follows:

$$
\begin{equation*}
\left\langle I, y_{i}^{x^{a}}\right\rangle_{r}=\bigcap_{\left(j_{1}, \ldots, j_{t}\right),\left(c_{j_{1}}, \ldots, c_{j_{t}}\right)}\left\langle I_{j_{1} \ldots j_{t}}^{c_{j_{1}} \ldots c_{j_{t}}}, y_{j_{1}}^{x_{j_{1}}}, \ldots, y_{j_{t}}^{x_{j_{t}}}\right\rangle_{r} . \tag{7}
\end{equation*}
$$

For each member in the intersection (7), repeat the above process. Let $I_{0}=N_{j_{1} \ldots j_{t}}^{c_{1} \ldots c_{j t}}\left(I_{j_{1} \ldots . j_{t}}^{c_{j} \ldots c_{t}}\right)$. Since at each step, either the number of elements of $\left\{y_{j_{1}}, \ldots, y_{j_{t}}\right\}$ strictly increase, or the vector $\left(c_{j_{1}}, \ldots, c_{j_{t}}\right)$ strictly decrease (under the product order), then in finite steps we must obtain either $I_{j_{1} \ldots j_{t}}^{c_{j} \ldots j_{j t}} \subseteq$ $\left[y_{j_{1}}^{x_{j_{1}}}, \ldots, y_{j_{t}}^{x^{c_{t}}}\right]$, or for any binomial $\mathbb{Y}^{\mathbf{f}}-\mathbb{Y}^{\mathbf{g}} \in I_{0}$, if $\mathbb{Y}^{\mathbf{f}} \in\left[y_{j_{1}}^{x_{j_{1}}}, \ldots, y_{j_{t}}^{c_{j_{t}}}\right]$, then $\mathbb{Y}^{\mathbf{g}} \in\left[y_{j_{1}}^{x^{c_{j_{1}}}}, \ldots, y_{j_{t}}^{x^{c_{t}}}\right]$. In the latter case, by Lemma 3.10,

$$
\left\langle I_{j_{1} \ldots j_{t}}^{c_{j} \ldots c_{j_{t}}}, y_{j_{1}}^{x_{j_{1}}}, \ldots, y_{j_{t}}^{\varepsilon_{j_{t}}}\right\rangle_{r}=\left\langle I_{0}, y_{j_{1}}^{x^{j_{1}}}, \ldots, y_{j_{t}}^{x_{c_{j t}}^{c_{j}}}\right\rangle_{r} \cap \bigcap_{1 \leq k \leq l^{\prime \prime}}\left\langle I_{j_{1} \ldots j_{t}}^{c_{j} \ldots c_{j_{t}}}, y_{j_{1}}^{x^{j_{1}}}, \ldots, y_{j_{t}}^{x_{c_{j t}}^{c_{j}}}, y_{t_{k}}^{x_{k}^{h_{k}}}\right\rangle_{r},
$$

where either $t_{k} \notin\left\{j_{1}, \ldots, j_{t}\right\}$, or $t_{k}=j_{m}$ and $h_{k}<c_{j_{m}}$ for $1 \leq k \leq l^{\prime \prime}$. It follows that $\left\langle I_{0}, y_{j_{1}}^{x_{j_{1}}}, \ldots, y_{j_{t}}^{c_{j_{t}}}\right\rangle_{r}$ is quasi-normal. Apply the same procedure to the rest of the members in the intersection, and in finite steps we eventually obtain the desired decomposition.

Now we can prove the main theorem of this paper.
Theorem 3.14. Assume that K is algebraically closed and inversive. Suppose that $I \subseteq K\{\mathbb{Y}\}$ is a pure binomial σ-ideal. Then $\langle I\rangle_{r}$ is finitely generated as a radical well-mixed σ-ideal.

Proof. By Lemma 3.7, we have

$$
\begin{equation*}
\langle I\rangle_{r}=\langle I\rangle_{r}: m \cap\left\langle I, y_{p_{1}}^{x_{1} a_{1}}\right\rangle_{r} \cap \cdots \cap\left\langle I, y_{p_{l}}^{x_{l}{ }_{l}}\right\rangle_{r} \tag{8}
\end{equation*}
$$

for some $\left\{p_{1}, \ldots, p_{l}\right\} \subseteq\{1, \ldots, n\}$ and some $\left\{a_{1}, \ldots, a_{l}\right\} \in \mathbb{N}^{l}$. By Lemma 3.13,

$$
\begin{equation*}
\left\langle I, y_{p_{k}}^{x_{k}^{a_{k}}}\right\rangle_{r}=\bigcap_{\left(j_{1}, \ldots, j_{t}\right),\left(b_{j_{1}}, \ldots, b_{j_{t}}\right)}\left\langle I_{j_{1} \ldots j_{t}}^{b_{j_{1}} \ldots b_{j_{t}}}, y_{j_{1}}^{x_{j_{1}}}, \ldots, y_{j_{t}}^{x_{j_{t}}}\right\rangle_{r} . \tag{9}
\end{equation*}
$$

Since in (9), either $I_{j_{1} \ldots j_{t}}^{b_{j_{1}} \ldots b_{j t}} \subseteq\left[y_{j_{1}}^{k^{b_{1}}}, \ldots, y_{j_{t}}^{x^{b_{j_{t}}}}\right]$, or $\left\langle I_{j_{1} \ldots . . j t}^{b_{j_{1}} \ldots b_{j t}}, y_{j_{1}}^{x_{j_{1}}^{b_{j_{1}}}}, \ldots, y_{j_{t}}^{k_{j}^{b_{j t}}}\right\rangle_{r}$ is quasi-normal, then by Lemma 3.9, each member in the intersection (9) is finitely generated as a radical well-mixed σ-ideal. And since (9) is a finite intersection, by Lemma 3.5, $\left\langle I, y_{\left.p_{k}{ }^{a_{k}}\right\rangle_{r} \text { is finitely generated as a radical well-mixed }}\right.$ σ-ideal for $1 \leq k \leq l$. Moreover, by Lemma 3.6, $\langle I\rangle_{r}: \mathrm{m}$ is finitely generated as a radical well-mixed σ-ideal. Putting all the above together, by (8) and Lemma $3.5,\langle I\rangle_{r}$ is finitely generated as a radical wellmixed σ-ideal.

Corollary 3.15. Assume that K is algebraically closed and inversive. Any strictly ascending chain of radical well-mixed σ-ideals generated by pure binomials in $K\{\mathbb{Y}\}$ is finite.

Proof. Assume that $I_{1} \subseteq I_{2} \subseteq \ldots \subseteq I_{k} \ldots$ is an ascending chain of radical well-mixed σ-ideals generated by pure binomials in $K\{\mathbb{Y}\}$. Then $\cup_{i=1}^{\infty} I_{i}$ is also a radical well-mixed σ-ideal generated by pure binomials. By Theorem 3.14, $\cup_{i=1}^{\infty} I_{i}$ is finitely generated as a radical well-mixed σ-ideal, say by $\left\{a_{1}, \ldots, a_{m}\right\}$. Then there exists $k \in \mathbb{N}$ large enough such that $\left\{a_{1}, \ldots, a_{m}\right\} \subset I_{k}$. It follows $I_{k}=I_{k+1}=$ $\ldots=\cup_{i=1}^{\infty} I_{i}$.

Remark 3.16. By Corollary 3.15, Conjecture 1.1 is valid for radical well-mixed σ-ideals generated by pure binomials in a σ-polynomial ring over an algebraic closed and inversive σ-field.

Remark 3.17. Theorem 3.14 and Corollary 3.15 actually hold for radical well-mixed σ-ideals generated by any binomials (not necessarily pure binomials). The proofs are almost identical.

In [6], Levin gave an example to show that a strictly ascending chain of well-mixed σ-ideals in a σ-polynomial ring may be infinite. Here we give a simpler example in terms of well-mixed σ-ideals generated by binomials.

Example 3.18. Let $I=\left\langle y_{1}^{x} y_{2}-y_{1} y_{2}^{x}\right\rangle$ and $I_{0}=\left[y_{1}^{x} y_{2}-y_{1} y_{2}^{x}, y_{1}^{x^{j}}\left(y_{1}^{x^{i}} y_{2}-y_{1} y_{2}^{x^{i}}\right)^{x^{l}}, y_{2}^{x^{j}}\left(y_{1}^{x^{i}} y_{2}-y_{1} y_{2}^{x^{i}}\right)^{x^{l}}\right.$: $i, j, l \in \mathbb{N}, i \geq 2, j \geq i-1]$. We claim that $I=I_{0}$. It is easy to check that $I_{0} \subseteq I$. So we only need to show that I_{0} is already a well-mixed σ-ideal. Following Example 3.3, let $\mathcal{I}_{L}=\left\langle y_{1}^{x} y_{2}-y_{1} y_{2}^{x}\right\rangle_{r}$. Suppose $a b \in I_{0} \subseteq \mathcal{I}_{L}$. Since $\mathcal{I}_{L}=\left[y_{1}^{x^{i}} y_{2}-y_{1} y_{2}^{x^{i}}: i \in \mathbb{N}^{*}\right]$ is a σ-prime σ-ideal, then $a \in \mathcal{I}_{L}$ or $b \in \mathcal{I}_{L}$. In each case, we can easily deduce $a b^{x} \in I_{0}$. Therefore, I_{0} is well-mixed and $I=I_{0}$. So $y_{1}^{x^{2}} y_{2}-y_{1} y_{2}^{x^{2}} \notin I$. In fact, in a similar way we can show that $\left\langle y_{1}^{x} y_{2}-y_{1} y_{2}^{x}, \ldots, y_{1}^{x^{k}} y_{2}-y_{1} y_{2}^{x^{k}}\right\rangle=\left[y_{1}^{x} y_{2}-y_{1} y_{2}^{x}, \ldots, y_{1}^{x^{k}} y_{2}-\right.$ $\left.y_{1} y_{2}^{x^{k}}, y_{1}^{x^{j}}\left(y_{1}^{x^{i}} y_{2}-y_{1} y_{2}^{x^{i}}\right)^{x^{l}}, y_{2}^{x^{j}}\left(y_{1}^{x^{i}} y_{2}-y_{1} y_{2}^{x^{i}}\right)^{x^{l}}: i, j, l \in \mathbb{N}, i \geq k+1, j \geq i-k\right]$ and $y_{1}^{x^{k+1}} y_{2}-y_{1} y_{2}^{x^{k+1}} \notin$ $\left\langle y_{1}^{x} y_{2}-y_{1} y_{2}^{x}, \ldots, y_{1}^{x^{k}} y_{2}-y_{1} y_{2}^{x^{k}}\right\rangle$ for $k \geq 2$. So we obtain a strictly infinite ascending chain of well-mixed σ-ideals:

$$
\left\langle y_{1}^{x} y_{2}-y_{1} y_{2}^{x}\right\rangle \subsetneq\left\langle y_{1}^{x} y_{2}-y_{1} y_{2}^{x}, y_{1}^{x^{2}} y_{2}-y_{1} y_{2}^{x^{2}}\right\rangle \subsetneq \cdots \subsetneq\left\langle y_{1}^{x} y_{2}-y_{1} y_{2}^{x}, \ldots, y_{1}^{x^{k}} y_{2}-y_{1} y_{2}^{y^{k}}\right\rangle \subsetneq \cdots
$$

As a consequence, \mathcal{I}_{L} is not finitely generated as a well-mixed σ-ideal.
In [3], it is shown that the radical closure, the reflexive closure, and the perfect closure of a binomial σ-ideal are still a binomial σ-ideal. However, the well-mixed closure of a binomial σ-ideal may not be a binomial σ-ideal. More precisely, it relies on the action of the difference operator. We will give an example to illustrate this.

Example 3.19. Let $K=\mathbb{C}$ and $R=\mathbb{C}\left\{y_{1}, y_{2}, y_{3}, y_{4}\right\}$. Let us consider the σ-ideal $I=\left\langle y_{1}^{2}\left(y_{3}-y_{4}\right), y_{2}^{2}\left(y_{3}-\right.\right.$ $\left.\left.y_{4}\right)\right\rangle$ of R. Since $\left(y_{1}^{2}-y_{2}^{2}\right)\left(y_{3}-y_{4}\right)=\left(y_{1}+y_{2}\right)\left(y_{1}-y_{2}\right)\left(y_{3}-y_{4}\right) \in I$, we have $\left(y_{1}+y_{2}\right)\left(y_{1}-y_{2}\right)^{x}\left(y_{3}-\right.$ $\left.y_{4}\right)=\left(y_{1}^{x+1}+y_{1}^{x} y_{2}-y_{1} y_{2}^{x}-y_{2}^{x+1}\right)\left(y_{3}-y_{4}\right) \in I$. Note that $y_{1}^{x+1}\left(y_{3}-y_{4}\right), y_{2}^{x+1}\left(y_{3}-y_{4}\right) \in I$. Hence $\left(y_{1}^{x} y_{2}-y_{1} y_{2}^{\alpha}\right)\left(y_{3}-y_{4}\right) \in I$. If the difference operator on \mathbb{C} is the identity map, in analogy with Example 4.1 of [7], we can show that $y_{1}^{x} y_{2}\left(y_{3}-y_{4}\right), y_{1} y_{2}^{x}\left(y_{3}-y_{4}\right) \notin I$. As a consequence, I is not a binomial σ-ideal.

On the other hand, if the difference operator on \mathbb{C} is the conjugation map (that is $\sigma(i)=-i$), the situation is totally changed. Since $\left(y_{1}^{2}+y_{2}^{2}\right)\left(y_{3}-y_{4}\right)=\left(y_{1}+i y_{2}\right)\left(y_{1}-i y_{2}\right)\left(y_{3}-y_{4}\right) \in I,\left(y_{1}+i y_{2}\right)\left(y_{1}-\right.$ $\left.i y_{2}\right)^{x}\left(y_{3}-y_{4}\right)=\left(y_{1}^{x+1}+i y_{1}^{x} y_{2}+i y_{1} y_{2}^{x}-y_{2}^{x+1}\right)\left(y_{3}-y_{4}\right) \in I$ and hence $\left(y_{1}^{x} y_{2}+y_{1} y_{2}^{x}\right)\left(y_{3}-y_{4}\right) \in I$. Similarly, we also have $\left(y_{1}^{x} y_{2}-y_{1} y_{2}^{x}\right)\left(y_{3}-y_{4}\right) \in I$. So $y_{1}^{x} y_{2}\left(y_{3}-y_{4}\right), y_{1} y_{2}^{x}\left(y_{3}-y_{4}\right) \in I$. Actually $I=$ $\left[y_{1}^{u}\left(y_{3}-y_{4}\right)^{a}, y_{1}^{w_{1}} y_{2}^{w_{2}}\left(y_{3}-y_{4}\right)^{a}, y_{2}^{v}\left(y_{3}-y_{4}\right)^{a}: u, v, w_{1}, w_{2}, a \in \mathbb{N}[x], 2 \preceq u, 2 \preceq v, x+1 \preceq w_{1}+w_{2}\right.$] (the notation \preceq is defined in [7]). In this case, $I=\left\langle y_{1}^{2}\left(y_{3}-y_{4}\right), y_{2}^{2}\left(y_{3}-y_{4}\right)\right\rangle$ is indeed a binomial σ-ideal.

Remark 3.20. We conjecture that the radical well-mixed closure of a binomial σ-ideal is still a binomial σ-ideal. However, we cannot prove it now.

Acknowledgment

The author thanks C. M. Yuan for helpful discussions.

ORCID

Jie Wang (D) http://orcid.org/0000-0002-9681-1451

References

[1] Eisenbud, D., Sturmfels, B. (1996). Binomial ideals. Duke Math. J. 84(1):1-45.
[2] Gao, X. S., Huang, Z., Wang, J., Yuan, C. M. (2017). Toric difference variety. J. Syst. Sci. Complexity 2017(30):173-195.
[3] Gao, X. S., Huang, Z., Yuan, C. M. (2017). Binomial difference ideals. J. Symb. Comput. 80(3):665-706.
[4] Hrushovski, E. (2012). The elementary theory of the Frobenius automorphisms. Available at: http://www.ma.huji.ac. il/~ehud/, July 2012.
[5] Levin, A. (2008). Difference Algebra. New York: Springer-Verlag.
[6] Levin, A. (2015). On the ascending chain condition for mixed difference ideals. Int. Math. Res. Not. 2015(10):2830-2840. DOI:10.1093/imrn/rnu021.
[7] Wang, J. (2017). Monomial difference ideals. Proc. Am. Math. Soc. 145(4):1481-1496.
[8] Wibmer, M. (2013). Algebraic Difference Equations. Lecture Notes. Available in https://www.math.upenn.edu/~ wibmer/AlgebraicDifferenceEquations.pdf
[9] Wibmer, M. (2015). Affine Difference algebraic groups. Habilitation thesis, RWTH Aachen University.

