
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=lagb20

Communications in Algebra

ISSN: 0092-7872 (Print) 1532-4125 (Online) Journal homepage: http://www.tandfonline.com/loi/lagb20

Finite basis for radical well-mixed difference ideals
generated by binomials

Jie Wang

To cite this article: Jie Wang (2017): Finite basis for radical well-mixed difference ideals generated
by binomials, Communications in Algebra, DOI: 10.1080/00927872.2017.1392541

To link to this article:  https://doi.org/10.1080/00927872.2017.1392541

Accepted author version posted online: 20
Oct 2017.
Published online: 15 Dec 2017.

Submit your article to this journal 

Article views: 2

View related articles 

View Crossmark data

http://www.tandfonline.com/action/journalInformation?journalCode=lagb20
http://www.tandfonline.com/loi/lagb20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/00927872.2017.1392541
https://doi.org/10.1080/00927872.2017.1392541
http://www.tandfonline.com/action/authorSubmission?journalCode=lagb20&show=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=lagb20&show=instructions
http://www.tandfonline.com/doi/mlt/10.1080/00927872.2017.1392541
http://www.tandfonline.com/doi/mlt/10.1080/00927872.2017.1392541
http://crossmark.crossref.org/dialog/?doi=10.1080/00927872.2017.1392541&domain=pdf&date_stamp=2017-10-20
http://crossmark.crossref.org/dialog/?doi=10.1080/00927872.2017.1392541&domain=pdf&date_stamp=2017-10-20


COMMUNICATIONS IN ALGEBRA®
https://doi.org/10.1080/00927872.2017.1392541

Finite basis for radical well-mixed di�erence ideals generated by
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ABSTRACT

In this paper, we prove a �nite basis theorem for radical well-mixed di�erence
ideals generated by binomials. As a consequence, every strictly ascending
chain of radical well-mixed di�erence ideals generated by binomials in a
di�erence polynomial ring is �nite, which solves an openproblem in di�erence
algebra raised by Hrushovski in the binomial case.
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1. Introduction

In [4], Hrushovski developed the theory of di�erence schemes, which is one of themajor recent advances
in di�erence algebra geometry. In Hrushovski’s theory, well-mixed di�erence ideals played a key role.
Therefore, it is signi�cant to make clear of the properties of well-mixed di�erence ideals.

It is well-known that Hilbert’s basis theorem does not hold for di�erence ideals in a di�erence
polynomial ring. Instead, we have Ritt–Raudenbush basis theorem which asserts that every perfect
di�erence ideal in a di�erence polynomial ring has a �nite basis. It is naturally to ask if the �nitely
generated property holds for more di�erence ideals. LetK be a di�erence �eld and R a �nitely di�erence
generated di�erence algebra over K. In [4, Section 4.6], Hrushovski raised the problem whether a
radical well-mixed di�erence ideal in R is �nitely generated. The problem is also equivalent to whether
the ascending chain condition holds for radical well-mixed di�erence ideals in R. For the sake of
convenience, let us state it as a conjecture:

Conjecture 1.1. Every strictly ascending chain of radical well-mixed di�erence ideals in R is �nite.

Also in [4, Section 4.6], Hrushovski proved that the answer is yes under some additional assumptions
on R. In [5], Levin showed that the ascending chain condition does not hold if we drop the radical
condition. The counterexample given by Levin is a well-mixed di�erence ideal generated by binomials.
In [9, Section 9], Wibmer showed that if R can be equipped with the structure of a di�erence Hopf
algebra over K, then Conjecture 1.1 is valid. In [7], Wang proved that Conjecture 1.1 is valid for radical
well-mixed di�erence ideals generated by monomials.

Di�erence ideals generated by binomials were �rst studied by Gao et al. [3]. Some basic properties of
di�erence ideals generated by binomials were proved in that paper due to the correspondence between
Z[x]-lattices and normal binomial di�erence ideals.

The main result of this paper is that every radical well-mixed di�erence ideal generated by binomials
in a di�erence polynomial ring over an algebraic closed and inversive di�erence �eld is �nitely generated.
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As a consequence, Conjucture 1.1 is valid for radical well-mixed di�erence ideals generated by binomials
in a di�erence polynomial ring over an algebraic closed and inversive di�erence �eld.

2. Preliminaries

2.1. Preliminaries for di�erence algebra

We recall some basic notions from di�erence algebra. Standard references are [5, 8]. All rings in this
paper will be assumed to be commutative and unital.

A di�erence ring, or σ -ring for short, is a ring R together with a ring endomorphism σ : R → R, and
we call σ a di�erence operator on R. If R is a �eld, then we call it a di�erence �eld, or σ -�eld for short. A
typical example of σ -�eld is the �eld of rational functionsQ(x) with σ(f (x)) = f (x + 1). In this paper,
all σ -�elds will be assumed to be of characteristic 0.

Following Gao et al. [2], we introduce the following notation of symbolic exponents. Let x be an
algebraic indeterminate and p =

∑s
i=0 cix

i ∈ N[x]. For a in a σ -ring, we denote ap =
∏s

i=0(σ
i(a))ci

with σ 0(a) = a and a0 = 1. It is easy to check that for p, q ∈ N[x], we have ap+q = apaq, apq = (ap)q.
Let R be a σ -ring. A σ -ideal I in R is an algebraic ideal which is closed under σ , i.e., σ(I) ⊆ I. If I also

has the property that ax ∈ I implies a ∈ I, it is called a re�exive σ -ideal. A σ -prime σ -ideal is a re�exive
σ -ideal which is prime as an algebraic ideal. A σ -ideal I is said to be well-mixed if for a, b ∈ R, ab ∈ I
implies abx ∈ I. A σ -ideal I is said to be perfect if for a ∈ R and g ∈ N[x] \ {0}, ag ∈ I implies a ∈ I. It
is easy to prove that every perfect σ -ideal is well-mixed and every σ -prime σ -ideal is perfect.

If F ⊆ R is a subset of R, then we denote the minimal ideal containing F by (F), the minimal σ -ideal
containing F by [F] and denote theminimal well-mixed σ -ideal, theminimal radical well-mixed σ -ideal,
the minimal perfect σ -ideal containing F by 〈F〉, 〈F〉r , {F}, respectively, which are called the well-mixed
closure, the radical well-mixed closure, the perfect closure of F, respectively.

Let K be a σ -�eld and Y = (y1, . . . , yn) a tuple of σ -indeterminates over K. Then the σ -polynomial

ring over K in Y is the polynomial ring in the variables yx
j

i for i = 1, . . . , n and j ∈ N. It is denoted by
K{Y} = K{y1, . . . , yn} and has a natural K-σ -algebra structure.

2.2. Preliminaries for binomial di�erence ideals

A Z[x]-lattice is a Z[x]-submodule of Z[x]n for some n. Since Z[x]n is Noetherian as a Z[x]-module, we
see that any Z[x]-lattice is �nitely generated as a Z[x]-module. If f1, . . . , fm generates a Z[x]-lattice L,
then we write L = (f1, . . . , fm).

Let K be a σ -�eld and Y = (y1, . . . , yn) a tuple of σ -indeterminates over K. For f = (f1, . . . , fn) ∈

N[x]n, we de�neYf =
∏n

i=1 y
fi
i .Y

f is called amonomial inY and f is called its support. For a, b ∈ K∗ =

K \ {0} and f , g ∈ N[x]n, aYf + bYg is called a binomial. If a = 1, b = −1, thenYf −Yg is called a pure
binomial. A (pure) binomial σ -ideal is a σ -ideal generated by (pure) binomials.

For f ∈ Z[x], we write f = f+ − f−, where f+, f− ∈ N[x] are the positive part and the negative part of
f , respectively. For f ∈ Z[x]n, f+ = (f1+ , . . . , fn+), f− = (f1− , . . . , fn−).

De�nition 2.1. A partial character ρ on a Z[x]-lattice L is a group homomorphism from L to the
multiplicative group K∗ satisfying ρ(xf) = (ρ(f))x for all f ∈ L.

A trivial partial character on a Z[x]-lattice L is de�ned by setting ρ(f) = 1 for all f ∈ L.
Given a partial character ρ on a Z[x]-lattice L, we de�ne the following binomial σ -ideal in K{Y},

IL(ρ) := [Yf+ − ρ(f)Yf− | f ∈ L].

L is called the support lattice of IL(ρ). In particular, if ρ is a trivial partial character on L, then the
binomial σ -ideal de�ned by ρ is called a lattice σ -ideal, which is denoted by IL.
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Letm be the multiplicatively closed set generated by yx
j

i for i = 1, . . . , n, j ∈ N. A σ -ideal I is said to
be normal if for anyM ∈ m and p ∈ K{Y},Mp ∈ I implies p ∈ I. For any σ -ideal I,

I :m = {p ∈ K{Y} | ∃M ∈ ms.t.Mp ∈ I}

is a normal σ -ideal.

Lemma 2.2 ([3, Corollary 6.20]). A normal binomial σ -ideal is radical.

Proof. For the proof, please refer to Gao et al. [3].

In [3, Theorem 6.19], it was proved that there is a one-to-one correspondence between normal
binomial σ -ideals and partial characters ρ on some Z[x]-lattice L.

In [3], the concept ofM-saturation of a Z[x]-lattice was introduced.

De�nition 2.3. Assume that K is algebraically closed. If a Z[x]-lattice L satis�es

mf ∈ L ⇒ (x − om)f ∈ L, (1)

wherem ∈ N, f ∈ Z[x]n, and om is them-th transforming degree of the unity of K (see [3, Lemma 5.13]
for the de�nition), then it is said to be M-saturated. For any Z[x]-lattice L, the smallest M-saturated
Z[x]-lattice containing L is called theM-saturation of L and is denoted by satM(L).

The following two lemmas were proved in [3] for the Laurent case and it is easy to generalize to the
normal case.

Lemma 2.4 ([3, Theorem 5.21]). Assume that K is algebraically closed and inversive. Let ρ be a partial
character on a Z[x]-lattice L. If IL(ρ) is well mixed, then L is M-saturated. Conversely, if L is M-saturated,
then either 〈IL(ρ)〉 :m = [1] or IL(ρ) is well-mixed.

Lemma 2.5 ([3, Theorem 5.23]). Assume that K is algebraically closed and inversive. Let ρ be a partial
character on a Z[x]-lattice L. Then 〈IL(ρ)〉r :m is either [1] or a normal binomial σ -ideal whose support
lattice is satM(L). In particular, 〈IL〉r :m is either [1] or IsatM(L).

3. Radical well-mixed di�erence ideal generated by binomials is �nitely generated

In this section, we will prove that every radical well-mixed σ -ideal generated by binomials in a σ -
polynomial ring over an algebraic closed and inversiveσ -�eld is �nitely generated as a radical well-mixed
σ -ideal. For simplicity, we only consider the case for pure binomials since it is easy to generalize to the
general case.

For convenience, for h ∈ Z[x], if deg(h+) > deg(h−), thenwe set h+ = h+ and h− = h−. Otherwise,
we set h+ = h− and h− = h+. Moveover, we set deg(0) = −1.

For a, b, c, d ∈ N, we de�ne axb > cxd if b > d, or b = d and a > c. For h ∈ Z[x], we use lt(h) and
lc(h) to denote the leading term and the leading coe�cient of h respectively.

Theorem 3.1. For any Z[x]-lattice L ⊆ Z[x]n, 〈IL〉r is �nitely generated as a radical well-mixed σ -ideal.

Proof. Denote the set of all maps from {1, . . . , n} to {+,−, 0} by 3 and τ0 ∈ 3 is the map such that
τ0(i) = 0 for 1 ≤ i ≤ n. Let 30 = 3\{τ0}. For any τ ∈ 30, we de�ne

Aτ := {(h1, . . . , hn) ∈ L | lc(hi) > 0 if τ(i) = +, lc(hi) < 0 if τ(i) = −, and lc(hi) = 0

if τ(i) = 0, i = 1, . . . , n},
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and

6τ := {(deg(h+
1 ), lc(h+

1 ), . . . , deg(h+
n ), lc(h+

n ), deg(h−
1 ), . . . , deg(h−

n )) | (h1, . . . , hn) ∈ Aτ }.

For any τ ∈ 30, let Gτ be the subset of Aτ such that

{(deg(g+
1 ), lc(g+

1 ), . . . , deg(g+
n ), lc(g+

n ), deg(g−
1 ), . . . , deg(g−

n )) | g = (g1, . . . , gn) ∈ Gτ }

is the set of minimal elements in 6τ under the product order. It is clear that Gτ is a �nite set. Let

Fτ := {Yg+ − Yg− | g ∈ Gτ }.

We claim that the �nite set ∪τ∈30Fτ generates 〈IL〉r as a radical well-mixed σ -ideal.
Let I0 = 〈∪τ∈30Fτ 〉r . We will prove the claim by showing that Yh+ − Yh− ∈ I0 for all h ∈ L. Let us

do induction on (lt(h+
1 ), . . . , lt(h+

n )) under the product order for h = (h1, . . . , hn) ∈ L. For simplicity,
we will assume that Yh+ − Yh− has the form

y
h+
1

1 · · · y
h+
t

t y
h−
t+1

t+1 · · · y
h−
n

n − y
h−
1

1 · · · y
h−
t

t y
h+
t+1

t+1 · · · y
h+
n

n ,

where 1 ≤ t ≤ n. And without loss of generality, we further assume lc(hi) 6= 0 for 1 ≤ i ≤ n.
The case for h = 0 is trivial. Now for the inductive step. By de�nition, there exists τ ∈ 30 and

(g1, . . . , gn) ∈ Gτ such that (h1, . . . , hn) ∈ Aτ and deg(g+
i ) ≤ deg(h+

i ), lc(g+
i ) ≤ lc(h+

i ),deg(g−
i ) ≤

deg(h−
i ), i = 1, . . . , n. Let us choose a j ∈ {1, . . . , n} such that

deg(h+
j ) − deg(g+

j ) = min
1≤i≤n

{deg(h+
i ) − deg(g+

i )}.

Without loss of generality, we can assume j = 1. Let s = deg(h+
1 )−deg(g+

1 ) ≥ 0. Since lc(h+
1 ) ≥ lc(g+

1 ),
there exists an e ∈ N[x] such that deg(e) < deg(h+

1 ) and p = h+
1 + e− xsg+

1 ∈ N[x]with lt(p) < lt(h+
1 ).

Then

ye1y
xsg+

2
2 · · · y

xsg+
t

t y
xsg−

t+1
t+1 · · · y

xsg−
n

n (y
h+
1

1 · · · y
h+
t

t y
h−
t+1

t+1 · · · y
h−
n

n − y
h−
1

1 · · · y
h−
t

t y
h+
t+1

t+1 · · · y
h+
n

n )

= y
p+xsg+

1
1 y

h+
2 +xsg+

2
2 · · · y

h+
t +xsg+

t
t y

h−
t+1+xsg−

t+1
t+1 · · · y

h−
n +xsg−

n
n

− y
h−
1 +e

1 y
h−
2 +xsg+

2
2 · · · y

h−
t +xsg+

t
t y

h+
t+1+xsg−

t+1
t+1 · · · y

h+
n +xsg−

n
n

= (y
g+
1
1 · · · y

g+
t
t y

g−
t+1
t+1 · · · y

g−
n
n − y

g−
1
1 · · · y

g−
t
t y

g+
t+1
t+1 · · · y

g+
n
n )x

s
y
p
1y

h+
2

2 · · · y
h+
t

t y
h−
t+1

t+1 · · · y
h−
n

n

+ y
p+xsg−

1
1 y

h+
2 +xsg−

2
2 · · · y

h+
t +xsg−

t
t y

h−
t+1+xsg+

t+1
t+1 · · · y

h−
n +xsg+

n
n

− y
h−
1 +e

1 y
h−
2 +xsg+

2
2 · · · y

h−
t +xsg+

t
t y

h+
t+1+xsg−

t+1
t+1 · · · y

h+
n +xsg−

n
n

= (y
g+
1
1 · · · y

g+
t
t y

g−
t+1
t+1 · · · y

g−
n
n − y

g−
1
1 · · · y

g−
t
t y

g+
t+1
t+1 · · · y

g+
n
n )x

s
y
p
1y

h+
2

2 · · · y
h+
t

t y
h−
t+1

t+1 · · · y
h−
n

n

+ yd11 · · · ydnn (y
w1+
1 · · · y

wn+
n − y

w1−
1 · · · y

wn−
n ),

for some d1, . . . , dn ∈ N[x] and some w = (w1, . . . ,wn) ∈ Z[x]n. It is clear that w ∈ L. Since
lt(p + xsg−

1 ) < lt(h+
1 ), lt(h−

1 + e) < lt(h+
1 ), then lt(w+

1 ) < lt(h+
1 ), and because of the choice of

j, we have s + deg(g+
i ) ≤ deg(h+

i ) for 2 ≤ i ≤ n, from which it follows lt(w+
i ) ≤ lt(h+

i ), 2 ≤

i ≤ n. Therefore, (lt(w+
1 ), . . . , lt(w+

n )) < (lt(h+
1 ), . . . , lt(h+

n )). Thus by the induction hypothesis,

y
w1+
1 · · · y

wn+
n − y

w1−
1 · · · y

wn−
n ∈ I0 and hence

ye1y
xsg+

2
2 · · · y

xsg+
t

t y
xsg−

t+1
t+1 · · · y

xsg−
n

n (Yh+ − Yh−) ∈ I0.

So by the properties of radical well-mixed σ -ideals, we have

y
xsg+

1
1 · · · y

xsg+
t

t y
xsg−

t+1
t+1 · · · y

xsg−
n

n (Yh+ − Yh−) ∈ I0,
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and then

y
xsg−

1
1 · · · y

xsg−
t

t y
xsg+

t+1
t+1 · · · y

xsg+
n

n (Yh+ − Yh−) ∈ I0.

If s > 0, let s′ = max{0, s − min1≤i≤t{deg(g
+
i ) − deg(g−

i )}} < s. Again by the properties of radical
well-mixed σ -ideals, we have

y
xs

′
g+
1

1 · · · y
xs

′
g+
t

t y
xsg+

t+1
t+1 · · · y

xsg+
n

n (Yh+ − Yh−) ∈ I0,

and then

y
xs

′
g−
1

1 · · · y
xs

′
g−
t

t y
xsg+

t+1
t+1 · · · y

xsg+
n

n (Yh+ − Yh−) ∈ I0.

If s′ > 0, repeat the above process, and we eventually obtain

y
g−
1
1 · · · y

g−
t
t y

xsg+
t+1

t+1 · · · y
xsg+

n
n (Yh+ − Yh−) ∈ I0.

Since deg(g−
i ) ≤ deg(h−

i ), 1 ≤ i ≤ t and s + deg(g+
i ) ≤ deg(h+

i ), t + 1 ≤ i ≤ n, then by the properties
of radical well-mixed σ -ideals, we have

Yh−(Yh+ − Yh−) ∈ I0. (2)

Similarly, we also have

Yh+(Yh+ − Yh−) ∈ I0. (3)

Combining (2) and (3), we obtain (Yh+ −Yh−)2 ∈ I0, and henceY
h+ −Yh− ∈ I0. So we complete the

proof.

Corollary 3.2. Let L ⊆ Z[x]n be a Z[x]-lattice such that IL is well-mixed, then IL is �nitely generated as
a radical well-mixed σ -ideal.

Proof. It is immediate from Theorem 3.1 since IL is already a radical well-mixed σ -ideal.

Example 3.3. Let L = (

(

x − 1
1 − x

)

) ⊆ Z[x]2 be aZ[x]-lattice. Since L is saturated, IL is a σ -prime σ -ideal

[3, Corollary 6.22(c)] and hence well mixed. Then by Theorem 3.1, IL = [yx
i

1 y2 − y1y
xi

2 : i ∈ N∗] =

〈yx1y2 − y1y
x
2〉r .

Example 3.4. Let L = (

(

x2 + 1 − x
x − 1

)

) ⊆ Z[x]2 be a Z[x]-lattice. Since L is saturated, IL is a σ -prime

σ -ideal and hence well-mixed. Then by Theorem 3.1, IL = 〈yx
2+1
1 yx2 − yx1y2, y

x3+1
1 yx

2

2 − y2〉r .

To show that radical well-mixed σ -ideals generated by binomials are �nitely generated, we need the
following lemma.

Lemma 3.5 ([7, Proposition 5.2]). Let F and G be subsets of any σ -ring R. Then

〈F〉r ∩ 〈G〉r = 〈FG〉r .

As a corollary, if I and J are two σ -ideals of R, then

〈I〉r ∩ 〈J〉r = 〈I ∩ J〉r = 〈IJ〉r .

Proof. For the proof, please refer to Wang [7].
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Lemma 3.6. Assume that K is algebraically closed and inversive. Suppose that I ⊆ K{Y} is a pure binomial
σ -ideal. Then 〈I〉r :m is �nitely generated as a radical well-mixed σ -ideal.

Proof. Since I :m is a normal binomial σ -ideal, there exists a Z[x]-lattice L such that I :m = IL. Note
that 〈I〉r :m=〈I :m〉r :m, so by Lemma 2.5, 〈I〉r :m is [1] or IsatM(L). Since 〈I〉r is radical well mixed, it
is easy to show that 〈I〉r :m is also radical well mixed. So by Corollary 3.2, 〈I〉r :m is �nitely generated
as a radical well-mixed σ -ideal.

Lemma 3.7. Assume that K is algebraically closed and inversive. Suppose that I ⊆ K{Y} is a pure binomial
σ -ideal. Then

〈I〉r = 〈I〉r :m ∩ 〈I, yx
a1

p1
〉r ∩ · · · ∩ 〈I, yx

al

pl
〉r

for some {p1, . . . , pl} ⊆ {1, . . . , n} and some (a1, . . . , al) ∈ Nl.

Proof. By Lemma 3.6, 〈I〉r :m is �nitely generated as a radical well-mixed σ -ideal. Therefore, there exist
f1, . . . , fs ∈ 〈I〉r : m and m1, . . . ,ms ∈ m such that 〈I〉r : m = 〈f1, . . . , fs〉r and m1f1, . . . ,msfs ∈ 〈I〉r .
Then by Lemma 3.5,

〈I〉r = 〈I, f1〉r ∩ 〈I,m1〉r

= 〈I, f1, f2〉r ∩ 〈I, f1,m2〉r ∩ 〈I,m1〉r

= 〈I, f1, f2〉r ∩ 〈I,m1m2〉r

= · · ·

= 〈f1, . . . , fs〉r ∩ 〈I,m1 · · ·ms〉r

= 〈I〉r :m ∩ 〈I, yx
a1

p1
〉r ∩ · · · ∩ 〈I, yx

al

pl
〉r ,

for some {p1, . . . , pl} ⊆ {1, . . . , n} and some (a1, . . . , al) ∈ Nl.

Suppose that {j1, . . . , jt} ⊆ {1, . . . , n}, (a1, . . . , at) ∈ Nt and I0 ⊆ K{y1, . . . , yn} is a pure binomial

σ -ideal. Let T
a1...at
j1...jt

= {y
f1
1 · · · y

fn
n | f1, . . . , fn ∈ N[x], deg(fji) < ai, 1 ≤ i ≤ t}. We say that I0 is

saturated with respect to {yx
a1

j1
, . . . , yx

at

jt
} if I0 = I0 : T

a1...at
j1...jt

, that is, for any g ∈ K{y1, . . . , yn} and

M ∈ T
a1...at
j1...jt

, Mg ∈ I0 implies g ∈ I0. Let I ⊆ K{y1, . . . , yn} be a pure binomial σ -ideal. The minimal

σ -ideal containing I which is saturated with respect to {yx
a1

j1
, . . . , yx

at

jt
} is called the T

a1...at
j1...jt

-saturated

closure of I, denoted by N
a1...at
j1...jt

(I). We will give a concrete description of the T
a1...at
j1...jt

-saturated closure of

a pure binomial σ -ideal I. Let I[0] = I and recursively de�ne I[i] = [I[i−1] : T
a1...at
j1...jt

](i = 1, 2, . . .). The

following lemma is easy to check by de�nition.

Lemma 3.8. Let I ⊆ K{y1, . . . , yn} be a pure binomial σ -ideal. Then

N
a1...at
j1...jt

(I) = ∪∞
i=0I

[i]. (4)

Let I0 ⊆ K{y1, . . . , yn} be a pure binomial σ -ideal. Then we say I = 〈I0, y
xa1
j1

, . . . , yx
at

jt
〉r is quasi-

normal if I0 is saturated with respect to {yx
a1

j1
, . . . , yx

at

jt
} and for any binomial Yf − Yg ∈ I0, if Y

f ∈

[yx
a1

j1
, . . . , yx

at

jt
], then Yg ∈ [yx

a1

j1
, . . . , yx

at

jt
]. In analogy with Theorem 3.1, we can prove the following

lemma.

Lemma 3.9. Let {j1, . . . , jt} ⊆ {1, . . . , n}, (a1, . . . , at) ∈ Nt and I0 ⊆ K{y1, . . . , yn} a pure binomial
σ -ideal. Assume that I = 〈I0, y

xa1
j1

, . . . , yx
at

jt
〉r is quasi-normal. Then I is �nitely generated as a radical

well-mixed σ -ideal.
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Proof. Let J = {Yh+ − Yh− ∈ I0 | Yh+ ,Yh− ∈ T
a1...at
j1...jt

}. By a similar argument with Theorem 3.1, we

can prove 〈J〉r is �nitely generated as a radical well-mixed σ -ideal. It follows that I = 〈J, yx
a1

j1
, . . . , yx

at

jt
〉r

is �nitely generated as a radical well-mixed σ -ideal.

Lemma3.10. Suppose that {j1, . . . , jt} ⊆ {1, . . . , n}, (a1, . . . , at) ∈ Nt and I ⊆ K{Y} is a pure binomialσ -
ideal. Let I0 = N

a1...at
j1...jt

(I). Assume that 〈I0, y
xa1
j1

, . . . , yx
at

jt
〉r is quasi-normal. Then there exist {p1, . . . , pl} ⊆

{1, . . . , n} and (b1, . . . , bl) ∈ Nl such that

〈I, yx
a1

j1
, . . . , yx

at

jt
〉r = 〈I0, y

xa1
j1

, . . . , yx
at

jt
〉r ∩

⋂

1≤k≤l

〈I, yx
a1

j1
, . . . , yx

at

jt
, yx

bk

pk
〉r ,

where either pk /∈ {j1, . . . , jt}, or pk = jm and bk < am for 1 ≤ k ≤ l.

Proof. Since 〈I0, y
xa1
j1

, . . . , yx
at

jt
〉r is quasi-normal, by Lemma 3.9, it is �nitely generated as a radical

well-mixed σ -ideal. That is to say, there exist f1, . . . , fs ∈ I0 such that

〈I0, y
xa1
j1

, . . . , yx
at

jt
〉r = 〈f1, . . . , fs, y

xa1
j1

, . . . , yx
at

jt
〉r .

By (4), I0 = ∪∞
i=0I

[i], so there exists i ∈ N such that f1, . . . , fs ∈ I[i]. By de�nition, there exist gi1, . . . , gili ∈

I[i−1] : T
a1...at
j1...jt

and mi1, . . . ,mili ∈ T
a1...at
j1...jt

such that f1, . . . , fs ∈ [gi1, . . . , gili ] and mi1gi1, . . . ,miligili ∈

I[i−1]. There further exist gi−11, . . . , gi−1li−1 ∈ I[i−2] : T
a1...at
j1...jt

and mi−11, . . . ,mi−1li−1 ∈ T
a1...at
j1...jt

such

thatmi1gi1, . . . ,miligili ∈ [gi−11, . . . , gi−1li−1 ] andmi−11gi−11, . . . ,mi−1li−1gi−1li−1 ∈ I[i−2]. Iterating this
process, we eventually have there exist g11, . . . , g1l1 ∈ I : T

a1...at
j1...jt

and m11, . . . ,m1l1 ∈ T
a1...at
j1...jt

such that

m21g21, . . . ,m2l2g2l2 ∈ [g11, . . . , g1l1 ] andm11g11, . . . ,m1l1g1l1 ∈ I. Hence by Lemma 3.5, we obtain

〈I, yx
a1

j1
, . . . , yx

at

jt
〉r = 〈I, g11, . . . , g1l1 , y

xa1
j1

, . . . , yx
at

jt
〉r ∩ 〈I,m11 · · ·m1l1 , y

xa1
j1

, . . . , yx
at

jt
〉r

= 〈I, g21, . . . , g2l2 , g11, . . . , g1l1 , y
xa1
j1

, . . . , yx
at

jt
〉r

∩ 〈I,m21 · · ·m2l2m11 · · ·m1l1 , y
xa1
j1

, . . . , yx
at

jt
〉r

= · · ·

= 〈I, gi1, . . . , gili , . . . , g11, . . . , g1l1 , y
xa1
j1

, . . . , yx
at

jt
〉r

∩ 〈I,mi1 · · ·mili · · ·m11 · · ·m1l1 , y
xa1
j1

, . . . , yx
at

jt
〉r

= 〈I0, y
xa1
j1

, . . . , yx
at

jt
〉r ∩

⋂

1≤k≤l

〈I, yx
a1

j1
, . . . , yx

at

jt
, yx

bk

pk
〉r

for some {p1, . . . , pl} ⊆ {1, . . . , n} and some (b1, . . . , bl) ∈ Nl, where either pk /∈ {j1, . . . , jt}, or pk = jm
and bk < am for 1 ≤ k ≤ l.

From the proof of Lemma 3.10, we obtain the following lemma which will be used later.

Lemma 3.11. Suppose that {j1, . . . , jt} ⊆ {1, . . . , n}, (a1, . . . , at) ∈ Nt and I ⊆ K{Y} is a pure binomial
σ -ideal. Let h ∈ N

a1...at
j1...jt

(I)\I. Then there exist {p1, . . . , pl} ⊆ {1, . . . , n} and (b1, . . . , bl) ∈ Nl such that

〈I, yx
a1

j1
, . . . , yx

at

jt
〉r = 〈I′, yx

a1

j1
, . . . , yx

at

jt
〉r ∩

⋂

1≤k≤l

〈I, yx
a1

j1
, . . . , yx

at

jt
, yx

bk

pk
〉r ,

where I′ ⊇ [I, h] is a pure binomial σ -ideal and either pk /∈ {j1, . . . , jt}, or pk = jm and bk < am for
1 ≤ k ≤ l.



8 J. WANG

Lemma 3.12. Suppose that {j1, . . . , jt} ⊆ {1, . . . , n}, (a1, . . . , at) ∈ Nt and I ⊆ K{Y} is a pure binomial
σ -ideal. Assume that there exists a binomial Yf − Yg ∈ I such that Yf ∈ [yx

a1

j1
, . . . , yx

at

jt
] and Yg /∈

[yx
a1

j1
, . . . , yx

at

jt
]. Then there exist {p1, . . . , pl} ⊆ {1, . . . , n} and (b1, . . . , bl) ∈ Nl such that

〈I, yx
a1

j1
, . . . , yx

at

jt
〉r =

⋂

1≤k≤l

〈I, yx
a1

j1
, . . . , yx

at

jt
, yx

bk

pk
〉r ,

where either pk /∈ {j1, . . . , jt}, or pk = jm and bk < am for 1 ≤ k ≤ l.

Proof. Since there exists a binomialYf−Yg ∈ I such thatYf ∈ [yx
a1

j1
, . . . , yx

at

jt
] andYg /∈ [yx

a1

j1
, . . . , yx

at

jt
],

then Yg ∈ 〈I, yx
a1

j1
, . . . , yx

at

jt
〉r . Therefore, by the properties of radical well-mixed σ -ideals, there exist

{p1, . . . , pl} ⊆ {1, . . . , n} and (b1, . . . , bl) ∈ Nl satisfying either pk /∈ {j1, . . . , jt}, or pk = jm and bk < am,

for 1 ≤ k ≤ l such that yx
b1

p1
· · · yx

bl
pl

∈ 〈I, yx
a1

j1
, . . . , yx

at

jt
〉r . Hence,

〈I, yx
a1

j1
, . . . , yx

at

jt
〉r =

⋂

1≤k≤l

〈I, yx
a1

j1
, . . . , yx

at

jt
, yx

bk

pk
〉r .

Lemma 3.13. Let i ∈ {1, . . . , n} and a ∈ N. Suppose that I ⊆ K{Y} is a pure binomial σ -ideal. Then

〈I, yx
a

i 〉r =
⋂

(j1,...,jt),(bj1 ,...,bjt )

〈I
bj1 ...bjt
j1...jt

, yx
bj1

j1
, . . . , yx

bjt

jt
〉r

is a �nite intersection, where for each member in the intersection, I
bj1 ...bjt
j1...jt

is a pure binomial σ -ideal and

either I
bj1 ...bjt
j1...jt

⊆ [yx
bj1

j1
, . . . , yx

bjt

jt
], or 〈I

bj1 ...bjt
j1...jt

, yx
bj1

j1
, . . . , yx

bjt

jt
〉r is quasi-normal.

Proof. Use Lemma 3.12 repeatedly and assume that we obtain a decomposition as follows:

〈I, yx
a

i 〉r =
⋂

(j1,...,jt),(cj1 ,...,cjt )

〈I, yx
cj1

j1
, . . . , yx

cjt

jt
〉r . (5)

For each member in the intersection (5), if I ⊆ [yx
cj1

j1
, . . . , yx

cjt

jt
], then we have nothing to do.

Otherwise, if there exists a binomial Yf − Yg ∈ I0\I such that Yf ∈ [yx
cj1

j1
, . . . , yx

cjt

jt
] and Yg /∈

[yx
cj1

j1
, . . . , yx

cjt

jt
], then by Lemma 3.11,

〈I, yx
cj1

j1
, . . . , yx

cjt

jt
〉r = 〈I′, yx

cj1

j1
, . . . , yx

cjt

jt
〉r ∩

⋂

1≤k≤l

〈I, yx
cj1

j1
, . . . , yx

cjt

jt
, yx

dk

pk
〉r ,

where I′ ⊇ [I,Yf − Yg] is a pure binomial σ -ideal and either pk /∈ {j1, . . . , jt}, or pk = jm and dk < cjm
for 1 ≤ k ≤ l. Moreover, by Lemma 3.12, we have

〈I′, yx
cj1

j1
, . . . , yx

cjt

jt
〉r =

⋂

1≤k≤l′

〈I′, yx
cj1

j1
, . . . , yx

cjt

jt
, yx

ek

sk
〉r ,

where either sk /∈ {j1, . . . , jt}, or sk = jm and ek < cjm for 1 ≤ k ≤ l′. Thus we obtain

〈I, yx
cj1

j1
, . . . , yx

cjt

jt
〉r =

⋂

1≤k≤l′

〈I′, yx
cj1

j1
, . . . , yx

cjt

jt
, yx

ek

sk
〉r ∩ (6)

⋂

1≤k≤l

〈I, yx
cj1

j1
, . . . , yx

cjt

jt
, yx

dk

pk
〉r .



COMMUNICATIONS IN ALGEBRA® 9

By substituting (6) into (5), we rewrite (5) as follows:

〈I, yx
a

i 〉r =
⋂

(j1,...,jt),(cj1 ,...,cjt )

〈I
cj1 ...cjt
j1...jt

, yx
cj1

j1
, . . . , yx

cjt

jt
〉r . (7)

For each member in the intersection (7), repeat the above process. Let I0 = N
cj1 ...cjt
j1...jt

(I
cj1 ...cjt
j1...jt

). Since

at each step, either the number of elements of {yj1 , . . . , yjt } strictly increase, or the vector (cj1 , . . . , cjt )

strictly decrease (under the product order), then in �nite steps we must obtain either I
cj1 ...cjt
j1...jt

⊆

[yx
cj1

j1
, . . . , yx

cjt

jt
], or for any binomial Yf − Yg ∈ I0, if Y

f ∈ [yx
cj1

j1
, . . . , yx

cjt

jt
], then Yg ∈ [yx

cj1

j1
, . . . , yx

cjt

jt
].

In the latter case, by Lemma 3.10,

〈I
cj1 ...cjt
j1...jt

, yx
cj1

j1
, . . . , yx

cjt

jt
〉r = 〈I0, y

x
cj1

j1
, . . . , yx

cjt

jt
〉r ∩

⋂

1≤k≤l′′

〈I
cj1 ...cjt
j1...jt

, yx
cj1

j1
, . . . , yx

cjt

jt
, yx

hk

tk
〉r ,

where either tk /∈ {j1, . . . , jt}, or tk = jm and hk < cjm for 1 ≤ k ≤ l′′. It follows that 〈I0, y
x
cj1

j1
, . . . , yx

cjt

jt
〉r

is quasi-normal. Apply the same procedure to the rest of the members in the intersection, and in �nite
steps we eventually obtain the desired decomposition.

Now we can prove the main theorem of this paper.

Theorem 3.14. Assume that K is algebraically closed and inversive. Suppose that I ⊆ K{Y} is a pure
binomial σ -ideal. Then 〈I〉r is �nitely generated as a radical well-mixed σ -ideal.

Proof. By Lemma 3.7, we have

〈I〉r = 〈I〉r :m ∩ 〈I, yx
a1

p1
〉r ∩ · · · ∩ 〈I, yx

al

pl
〉r (8)

for some {p1, . . . , pl} ⊆ {1, . . . , n} and some {a1, . . . , al} ∈ Nl. By Lemma 3.13,

〈I, yx
ak

pk
〉r =

⋂

(j1,...,jt),(bj1 ,...,bjt )

〈I
bj1 ...bjt
j1...jt

, yx
bj1

j1
, . . . , yx

bjt

jt
〉r . (9)

Since in (9), either I
bj1 ...bjt
j1...jt

⊆ [yx
bj1

j1
, . . . , yx

bjt

jt
], or 〈I

bj1 ...bjt
j1...jt

, yx
bj1

j1
, . . . , yx

bjt

jt
〉r is quasi-normal, then by

Lemma 3.9, each member in the intersection (9) is �nitely generated as a radical well-mixed σ -ideal.
And since (9) is a �nite intersection, by Lemma 3.5, 〈I, yx

ak
pk

〉r is �nitely generated as a radical well-mixed
σ -ideal for 1 ≤ k ≤ l. Moreover, by Lemma 3.6, 〈I〉r : m is �nitely generated as a radical well-mixed
σ -ideal. Putting all the above together, by (8) and Lemma 3.5, 〈I〉r is �nitely generated as a radical well-
mixed σ -ideal.

Corollary 3.15. Assume that K is algebraically closed and inversive. Any strictly ascending chain of radical
well-mixed σ -ideals generated by pure binomials in K{Y} is �nite.

Proof. Assume that I1 ⊆ I2 ⊆ . . . ⊆ Ik . . . is an ascending chain of radical well-mixed σ -ideals
generated by pure binomials in K{Y}. Then ∪∞

i=1Ii is also a radical well-mixed σ -ideal generated by
pure binomials. By Theorem 3.14, ∪∞

i=1Ii is �nitely generated as a radical well-mixed σ -ideal, say by
{a1, . . . , am}. Then there exists k ∈ N large enough such that {a1, . . . , am} ⊂ Ik. It follows Ik = Ik+1 =

. . . = ∪∞
i=1Ii.

Remark 3.16. By Corollary 3.15, Conjecture 1.1 is valid for radical well-mixed σ -ideals generated by
pure binomials in a σ -polynomial ring over an algebraic closed and inversive σ -�eld.
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Remark 3.17. Theorem 3.14 and Corollary 3.15 actually hold for radical well-mixed σ -ideals generated
by any binomials (not necessarily pure binomials). The proofs are almost identical.

In [6], Levin gave an example to show that a strictly ascending chain of well-mixed σ -ideals in a
σ -polynomial ring may be in�nite. Here we give a simpler example in terms of well-mixed σ -ideals
generated by binomials.

Example 3.18. Let I = 〈yx1y2 − y1y
x
2〉 and I0 = [yx1y2 − y1y

x
2, y

xj

1 (yx
i

1 y2 − y1y
xi

2 )x
l
, yx

j

2 (yx
i

1 y2 − y1y
xi

2 )x
l
:

i, j, l ∈ N, i ≥ 2, j ≥ i − 1]. We claim that I = I0. It is easy to check that I0 ⊆ I. So we only need to
show that I0 is already a well-mixed σ -ideal. Following Example 3.3, let IL = 〈yx1y2 − y1y

x
2〉r . Suppose

ab ∈ I0 ⊆ IL. Since IL = [yx
i

1 y2 − y1y
xi

2 : i ∈ N∗] is a σ -prime σ -ideal, then a ∈ IL or b ∈ IL. In

each case, we can easily deduce abx ∈ I0. Therefore, I0 is well-mixed and I = I0. So yx
2

1 y2 − y1y
x2

2 /∈ I.

In fact, in a similar way we can show that 〈yx1y2 − y1y
x
2, . . . , y

xk

1 y2 − y1y
xk

2 〉 = [yx1y2 − y1y
x
2, . . . , y

xk

1 y2 −

y1y
xk

2 , yx
j

1 (yx
i

1 y2 − y1y
xi

2 )x
l
, yx

j

2 (yx
i

1 y2 − y1y
xi

2 )x
l
: i, j, l ∈ N, i ≥ k + 1, j ≥ i − k] and yx

k+1

1 y2 − y1y
xk+1

2 /∈

〈yx1y2 − y1y
x
2, . . . , y

xk

1 y2 − y1y
xk

2 〉 for k ≥ 2. So we obtain a strictly in�nite ascending chain of well-mixed
σ -ideals:

〈yx1y2 − y1y
x
2〉 ( 〈yx1y2 − y1y

x
2, y

x2

1 y2 − y1y
x2

2 〉 ( · · · ( 〈yx1y2 − y1y
x
2, . . . , y

xk

1 y2 − y1y
xk

2 〉 ( · · · .

As a consequence, IL is not �nitely generated as a well-mixed σ -ideal.

In [3], it is shown that the radical closure, the re�exive closure, and the perfect closure of a binomial
σ -ideal are still a binomial σ -ideal. However, the well-mixed closure of a binomial σ -ideal may not be
a binomial σ -ideal. More precisely, it relies on the action of the di�erence operator. We will give an
example to illustrate this.

Example 3.19. LetK = C andR = C{y1, y2, y3, y4}. Let us consider the σ -ideal I = 〈y21(y3−y4), y
2
2(y3−

y4)〉 of R. Since (y21 − y22)(y3 − y4) = (y1 + y2)(y1 − y2)(y3 − y4) ∈ I, we have (y1 + y2)(y1 − y2)
x(y3 −

y4) = (yx+1
1 + yx1y2 − y1y

x
2 − yx+1

2 )(y3 − y4) ∈ I. Note that yx+1
1 (y3 − y4), y

x+1
2 (y3 − y4) ∈ I. Hence

(yx1y2 − y1y
x
2)(y3 − y4) ∈ I. If the di�erence operator onC is the identity map, in analogy with Example

4.1 of [7], we can show that yx1y2(y3 − y4), y1y
x
2(y3 − y4) /∈ I. As a consequence, I is not a binomial

σ -ideal.
On the other hand, if the di�erence operator on C is the conjugation map (that is σ(i) = −i), the

situation is totally changed. Since (y21 + y22)(y3 − y4) = (y1 + iy2)(y1 − iy2)(y3 − y4) ∈ I, (y1 + iy2)(y1 −

iy2)
x(y3 − y4) = (yx+1

1 + iyx1y2 + iy1y
x
2 − yx+1

2 )(y3 − y4) ∈ I and hence (yx1y2 + y1y
x
2)(y3 − y4) ∈ I.

Similarly, we also have (yx1y2 − y1y
x
2)(y3 − y4) ∈ I. So yx1y2(y3 − y4), y1y

x
2(y3 − y4) ∈ I. Actually I =

[yu1(y3 − y4)
a, yw1

1 yw2
2 (y3 − y4)

a, yv2(y3 − y4)
a : u, v,w1,w2, a ∈ N[x], 2 � u, 2 � v, x+1 � w1 +w2] (the

notation � is de�ned in [7]). In this case, I = 〈y21(y3 − y4), y
2
2(y3 − y4)〉 is indeed a binomial σ -ideal.

Remark 3.20. We conjecture that the radical well-mixed closure of a binomial σ -ideal is still a binomial
σ -ideal. However, we cannot prove it now.
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